学习笔记20 热传导方程

之前没学过数值分析,对于误差分析、偏微分方程求解什么的一窍不通,但是看队友微分方程建模学得比较好,解模的能力需要跟上。B站上面有人专门做了视频讲解。有点长,在此以文字形式保存下来。
原视频

理论依据

符号解释

符号 意义
u u u 温度
x x x 传播的位移
t t t 时间
j j j x离散化后的序号 j j j=1,2,…,N+1
n n n t离散化后的序号, n = 1 , 2 , . . . n=1,2,... n=1,2,...
f f f 热源带来的温度影响

公式推导

热传导方程
∂ u ∂ t ( x , t ) = α 2 ∂ 2 ∂ x 2 u ( x , t ) + f ( x , t ) \frac{\partial u}{\partial t}\left( x,t \right) =\alpha ^2\frac{\partial ^2}{\partial x^2}u\left( x,t \right) +f\left( x,t \right) tu(x,t)=α2x22u(x,t)+f(x,t)
这一类偏微分方程用合适的初始条件和边界条件即可求解(至于为什么,我也不知道)

{ ∂ u ∂ t ( x , t ) = α 2 ∂ 2 ∂ x 2 u ( x , t ) + f ( x , t ) u ( x , 0 ) = φ ( x ) u ( a , t ) = μ 1 ( t ) , u ( b , t ) = μ 2 ( t ) \begin{cases} \frac{\partial u}{\partial t}\left( x,t \right) =\alpha ^2\frac{\partial ^2}{\partial x^2}u\left( x,t \right) +f\left( x,t \right)\\ u\left( x,0 \right) =\varphi \left( x \right)\\ u\left( a,t \right) =\mu _1\left( t \right) ,u\left( b,t \right) =\mu _2\left( t \right)\\ \end{cases} tu(x,t)=α2x22u(x,t)+f(x,t)u(x,0)=φ(x)u(a,t)=μ1(t),u(b,t)=μ2(t)
下面是我的理解
正常我们研究一元函数,会把自变量离散化,如初学积分的时候
在这里插入图片描述
现在我们研究多元函数需要把自变量离散化。我的理解是把两个自变量离散化成无限个小方格,很多论文都是这么做的。
在这里插入图片描述
然后我们截取我们需要的,比如 x = a x=a x=a这边我们截一段, x = b x=b x=b这边我们截一段。这就是边值。之后我们命令计算机,从初值开始朝着某个方向遍历,把小方格顶点对应的自变量( x x x, t t

  • 20
    点赞
  • 59
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值