Detect Me If You Can: Spam Bot Detection Using InductiveRepresentation Learning阅读笔记
一、Abstract
- 在本文中,作者首次提出了一种基于图卷积神经网络(GCNN)的垃圾邮件僵尸检测模型。
二、CCS Concepts
- 信息体系:社交网络
- 安全和隐私: 社交网络安全和隐私
- 计算方法:神经网络
三、Keywords
- Social Media Analysis (社交媒体分析)
- Bot Detection (机器人检测)
- Graph Embedding (图嵌入)
- GraphConvolutional Neural Networks (图卷积神经网络)
四、Introduction
- 以往的社交垃圾机器人的检测方法不够完善,所以作者提出了以新的深度学习GCN方法为基础的垃圾邮件机器人检测方法。
- GCN的主要思想是使用神经网络基于其特征和相邻节点的特征来表示向量空间中的节点。
- 在本文中,作者提出了一种基于用户个人资料特征和社交网络图的机器人检测的归纳表示学习方法。
- 作者贡献:
- 作者在先前文献中使用的社交垃圾机器人的数据集上部署了图卷积神经网络。
- 作者通过MLP分类器将他们的方法与两种算法进行比较,并将信度传播应用于数据集。
- 作者证明了在他们的方法中使用图结构在社交机器人的检测中获得了更好的性能。
五、Related Work(相关工作)
- 作者在这一段中首先对以往其他文献的研究做了总结和比较,然后引出下面自己新的研究。
Graph Convolutional Networks(图卷积网络)
六、Dataset(数据集)
-
作者在本文中使用了杨等人在2013年收集的Twitter机器人账户的数据集。这个数据集包含11000个节点和2342816个边。
-
下表是对数据集的统计:
-
下图显示了数据集中帐户的分布度。大多数帐户有少量的追随者和追随者,也有少数帐户有超过1000个帐户在他们的邻居。
-
图2.a显示了机器人程序和用户帐户的年龄和用户帐户名的长度。如图2.b所示,在之前的工作[6]中报告的,bot帐户具有更小的时间段,这意味着它们比用户帐户创建得更晚。如[13]所示,账户名称的长度没有显著差异
七、Methodology(方法)
- 作者使用了归纳表示学习方法来检测twitter机器人帐户。