淘宝用户购物行为数据分析

一、数据说明以及需求分析

1.1数据说明

本数据集是阿里巴巴提供的一个淘宝用户行为数据集,本次分析数据提供了1万用户量级的完整行为数据。数据包含了抽样出来的1W用户在一个月时间(11.18~12.18)之内的移动端行为数据。

字段

字段说明

提取说明

user_id

用户标识

抽样&字段脱敏

item_id

商品标识

字段脱敏

behavior_type

用户对商品的行为类型

包括浏览、收藏、加购物车、购买,对应取值分别是1234

item_category

商品分类标识

字段脱敏

time

行为时间

精确到小时级别

 使用工具:Mysql数据库,DataGrip,Excel,Tableau

1.2数据需求分析

根据数据集特点,本次数据分析将从两个维度对数据进行分析:

用户维度

1、PV(页面浏览量)、UV(独立访客)、PV/UV

2、用户活跃度分析:分析用户在不同时段的活跃度,探索哪些时间段用户更倾向于进行购买或其他行为,进而优化营销策略和系统推荐。

3、用户购买行为分析:

    间隔时间,了解用户再次购买的平均时间间隔,可以帮助预测用户下次购买的时间,投放优惠券

    漏斗分析:从收藏转化率、购物车转化率、成交转化率,对用户行为从浏览到购买进行漏斗分析,构建用户行为漏斗模型,分析用户从浏览到购买各个环节的转化情况,找出可能存在的流失点并提出改进建议。

产品维度

1、浏览量、成交量、加购量、成交率探索用户对商品的购买偏好,了解商品的销售规律

2、用户价值分群(RFM模型)

二、数据处理

2.1时间格式处理

 导入时发现time的格式并不是标准的时间格式,将其格式改成datetime:

 

  导入数据如下:

  为了能够进一步更好的分析时间数据,将添加time_date以及time_hour:

ALTER TABLE tbdata.user_action
ADD COLUMN time_date DATE,
ADD COLUMN time_hoUr TIME;
UPDATE tbdata.user_action
SET time_date = DATE(time),
time_hour = TIME(time);

 处理格式结果如下:

2.2行为格式的处理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值