斐波那契数列迭代求法
在数学上被以递归数列的方法定义:
F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2) (n>=2)
根据第一二位的数字求出第三位的数字,在令以前一二位的数字等于二三位的数字,以此类推依次往后求。
public static int FibonacciD(int num) {
if(num <= 0) {
return 0;
}
if(num == 1 || num == 2) {
return 1;
}
int first = 1,second =1,third = 0;
for(int i = 3; i<= num ;i++) {
third = first + second;
first = second;
second = third;
}
return third;
}
迭代改进
F(0)=0,1,1,2,3,5,8,13,21,34
前两位是0,1,可以选择从零或一开始
//注意:位运算 判断n是不是奇数(偶数&1结果为0,奇数&1结果为1)
//相同时为奇数 不同时为偶数
public static long computeIterative(int n) {
if (n > 1) {
long a;
long b = 1;
//当n为偶数时,输出b也为偶数,选择从0直接开始
n--;
a = n & 1;
n /= 2; //每次推进两位
while (n-->0) {
a += b;
b += a;
}
return b;
}
return n;
}
普通迭代每次循环向后计算一位,经过优化后的算法每次向后推进两位,需要注意以下几点:
- 每次循环推进两位,因此循环次数减半
- a+=b第一个数+第二个数生成第三个数,b+=a第三个数+第二个数生成第四个数。然后输出b,因此b输出的一定是偶数位(即n为奇数时正常输出)
- n从0开始,当n为奇数时实际有偶数个数,当n为奇数时,b输出的为偶数位上的数字。当n为偶数时,b输出的为奇数位上的数字
- 当n为奇数时,让数列从0开始;
- 当n为偶数时,b输出为奇数位,要使其输出偶数位即将首位0去掉,让数列从n=1开始。
- 让n为奇数时a=0,偶数时n=1,就可以让a=(n-1)&1;