仿妆达人福音,阿里和武汉理工的AI换妆技术SHMT,让你轻松复制妆容

这篇论文是来自武汉理工大学、阿里巴巴达摩院等机构的研究者撰写的《SHMT: Self-supervised Hierarchical Makeup Transfer via Latent Diffusion Models》,提出了一种基于潜在扩散模型的自监督分层妆容转移(SHMT)方法,有效解决现有妆容转移方法存在的问题,在多种评估指标下表现优异。

 

  1. 研究背景:妆容转移在社交媒体和虚拟世界应用广泛,但面临两大难题:缺乏配对数据导致现有方法合成的伪配对数据质量不佳,误导模型训练,影响妆容保真度;不同妆容风格对人脸影响不同,现有方法难以灵活处理源内容细节的保留或舍弃。

  2. 相关工作:回顾妆容转移领域方法,多数利用伪配对数据训练,而 SHMT 采用自监督学习,无需合成伪配对数据;介绍扩散模型在图像生成等任务的进展,SHMT 基于此展开研究。

  3. 方法:基于潜在扩散模型(LDM)开发,包含图像编码器、解码器和 UNet 去噪器。通过 “解耦 - 重建” 范式,利用预训练模型分割前景背景,对前景图像变换得到妆容表示,用 3D 模型和拉普拉斯金字塔获取内容表示;提出 IDA 模块,利用空间注意力和中间结果动态调整注入条件,校正对齐误差;训练时固定预训练自动编码器参数,联合优化 UNet 去噪器和 IDA 模块,推理时输入源图像背景、内容表示和参考图像妆容表示生成结果。

 

  1. 实验:使用 MT、Wild - MT 和 LADN 数据集,以 FID、CLS 和 Key - sim 为评估指标,对比七种先进方法。定性结果显示 SHMT 能自然准确再现妆容,定量结果表明其在图像真实感、妆容保真度和内容保留方面表现出色,用户研究也证实了 SHMT 的优势;消融实验验证了分层纹理细节和 IDA 模块的有效性,还展示了模型的鲁棒性和泛化能力;指出模型依赖预训练模型,参数较多、推理耗时。

  2. 结论:提出的 SHMT 方法采用自监督策略,能灵活处理纹理细节,有效校正对齐误差,定量和定性分析证明其有效性,但存在依赖预训练模型和计算资源需求大的局限性

 

Github:https://github.com/Snowfallingplum/SHMT

论文:https://arxiv.org/abs/2412.11058

Data_Flop网址:https://www.data-flop.com/shareLogin?5142

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

开心的AI频道

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值