一文了解阿里的 Qwen2.5 模型

最近被DeepSeek刷屏了,但是在之外阿里在2025年1月28日推出了Qwen 2.5 Max模型。

Qwen2.5-Max 的特点:大规模的 MoE 模型,预训练于超 20 万亿 tokens,并经过 SFT 和 RLHF 后训练。

性能表现:在多个基准测试中与领先模型比较,在 Arena-Hard、LiveBench 等测试中优于 DeepSeek V3,在其他评估中也有竞争力表现

使用方法:可在 Qwen Chat 中直接使用,其 API 通过阿里云获取,与 OpenAI-API 兼容,文中给出了 Python 示例代码。

未来工作:致力于通过创新应用规模化强化学习增强模型的思考和推理能力,以超越人类智能。

### Qwen2.5 模型部署配置教程 #### 1. 环境准备 为了成功部署Qwen2.5模型,需先准备好运行环境。这包括安装虚拟环境、必要的依赖库以及下载所需的模型文件。 对于虚拟环境的创建,在Python项目中推荐使用`venv`模块来隔离不同项目的依赖关系[^1]: ```bash python -m venv qwen_env source qwen_env/bin/activate # Linux or macOS qwen_env\Scripts\activate # Windows ``` 接着,通过pip工具安装所需的各种Python包作为依赖库,这些通常会记录在一个名为requirements.txt的文件里: ```bash pip install --upgrade pip pip install -r requirements.txt ``` 最后一步是从官方渠道获取最新的Qwen2.5模型权重文件并将其放置于指定路径下以便后续调用。 #### 2. 使用魔搭社区(ModelScope) 考虑到Qwen2.5是由阿里云开发的大规模预训练语言模型之一,因此可以利用魔搭社区提供的资源和服务来进行本地化部署工作[^2]。具体来说就是按照文档指示完成注册登录过程之后,找到对应版本的Qwen2.5模型页面,遵循给定的操作指引实现快速上手应用。 #### 3. 利用Hugging Face Transformers库 除了上述方法外,还可以考虑采用Hugging Face平台上的Transformers开源框架来简化整个流程。该方案允许开发者轻松加载预先训练好的Qwen系列模型实例,并提供了丰富的API接口用于自定义任务扩展[^3]。例如初始化一个基于transformer架构的语言处理对象可参照如下代码片段所示: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B") model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B") ``` 以上即为关于Qwen2.5模型的一般性部署指导说明,实际操作过程中可能还会遇到其他细节问题需要解决。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

开心的AI频道

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值