推理大模型与普通大模型的区别是什么?

核心观点:别把推理大模型看成普通大模型的简单升级版!这是两种基于不同工作机制、训练方法和运行机制的AI模型。

普通大模型,如ChatGPT、Qwen这些,工作流程是这样的:先用海量文本数据进行预训练,让它学会语言规律和各种知识;然后通过监督微调(SFT)和人类反馈的强化学习(RLHF)进行对齐。

以我自己的使用经验来说,像ChatGPT这类通用模型很会聊天,多轮对话也没问题,但遇到需要一步步推理的任务(比如debug代码),它有时候会给出看起来很对但其实错误的答案。这让我明白,模型的设计目标不同,能干的事也差得远。后来推理大模型出来了,像OpenAI的o系列、DeepSeek的R1、Google的Gemini Flash Thinking,它们在处理数学、编程这种需要多步推导的问题时,会先“想一想”再回答。

区别一:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

开心的AI频道

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值