斯坦福推出免费AI深度搜索工具Storm,快速生成维基百科式报告

最近一段时间很多家AI厂商都推出了AI深度搜索功能,比如谷歌、Open AI、X,但是很多都是需要会员才可以使用的,今天就给大家推荐一个斯坦福大学为研究人员推出了一款免费的人工智能工具,这个工具名字是Storm,可在短时间内生成类似维基百科的长篇报告。

研究目标:探索如何通过 LLM 生成内容详实、结构有序的长文(类似维基百科),重点解决预写作阶段的挑战,包括主题研究、信息整理和大纲构建。

FreshWiki 数据集:收集 2022-2023 年高质量维基百科文章(B 级及以上),避免 LLM 训练数据泄漏,包含 100 篇短于 3000 词的文章用于实验。

评估指标:标题软召回率(语义相似度)和实体召回率,衡量与人类大纲的覆盖度。ROUGE 分数、实体召回率,以及基于维基百科标准的人工评分(兴趣度、组织性、覆盖广度等)。

方法:STORM 通过多阶段流程自动化预写作阶段,使用方法很简单,登录网站,输入想要研究的主题(目前仅支持英文),它将搜索数百个网页并创建报告,报告包含目录、引文和参考文献,还可以下载PDF格式。

  1. 视角发现:检索相关维基百科文章,提取目录结构,生成多样化视角(如 “基础事实作者”“事件策划者” 等),确保覆盖主题的不同维度。

  2. 模拟对话:LLM 模拟不同视角的 “作者” 与 “主题专家” 对话,通过多轮提问(如交通安排、预算等具体问题)获取详细信息,答案基于可信网络资源检索并筛选。

  3. 大纲构建:首先生成初步大纲,再结合对话收集的信息进行细化,形成层次化的章节结构。

  4. 文章撰写:基于大纲和检索资源,分章节生成内容,确保引用来源,并通过去重和摘要生成优化连贯性。

示例一“Storm”:我让他帮我搜索“MCP原理”相关的论文,用时大概二分钟,找到了十一篇相关文章,能看到头脑风暴的过程,是把“MCP原理”这样一个比较大的问题拆解成类似“您能否提供一些具体材料或应用的例子,说明 MCP 技术对材料科学研究成果产生了重大影响?”这样的多个小问题,通过回答每个小问题来生成一篇研究报告。

示例二“Co-Storm”:是在原有 STORM基础上进化而来的多智能体协作对话,通过模拟圆桌讨论,帮助用户更高效地探索复杂主题、发现用户未意识到的潜在信息需求。

角色分工:

  • 专家智能体:基于互联网资源回答问题,并根据对话历史提出专业视角的后续问题(如 “文学教授”“纪录片导演” 等角色)。

  • 主持人(Moderator):非专家角色,负责挖掘 “已知未知”(用户可能意识到但未明确的问题),引导对话深入未知领域(如基于未使用的检索信息提问)。

  • 人类用户:可主动参与对话(引导焦点)或被动观察,通过动态思维导图跟踪讨论,减轻认知负担。

协作模式:模拟圆桌讨论,专家与主持人交替提问/回答,形成多轮对话,覆盖主题的多元视角(如 “战争与和平” 主题中,结合历史、文学、社会学角度)

核心功能:实时可视化对话脉络,将信息按层次关联(如主题→子主题→细节),标注每个观点的来源,帮助用户理解知识网络,避免信息遗漏。用户无需强制提问,可通过观察智能体对话(如专家讨论 “气候变化对农业的影响”)自然获取深层信息,适合复杂主题的无压力探索。主持人角色专门利用未被使用的检索信息,提出用户可能忽略的问题(如 “该技术在小众群体中的应用案例”),突破传统搜索的 “已知问题” 局限。基于对话和思维导图,自动生成结构化长文(类维基百科),包含引用来源,支持一键导出 PDF,适合科研写作、学习总结等场景。

关键实验结果:STORM 生成的大纲在标题软召回(92.73%)和实体召回(45.91%)上显著优于基线(如 Direct Gen、RAG)。生成文章在组织性(+25%)、覆盖广度(+10%)等方面获专家更高评价,引用准确率达 84.83%。视角引导和多轮对话对提升大纲质量至关重要,缺少任一环节会导致召回率下降。10 名资深维基编辑认可 STORM 的实用性,认为其生成的文章结构更优、信息更深入,但指出存在来源偏差(如情感化语言)和无关事实关联过度等问题。

小编总结:我觉得这个工具很适用于科研写作、学习研究,但是它比较依赖英文语料,暂不支持多模态(图/表)

网址链接:https://storm.genie.stanford.edu/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

开心的AI频道

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值