【Tensorflow】——张量:创建、常用函数

本文详细介绍了TensorFlow中张量的创建,包括直接创建、从numpy转换以及创建特殊张量的方法。同时,文章还涵盖了TensorFlow的常用函数,如张量的平均、求和、数学运算、变量标记、数据集构建、梯度计算、遍历、独热编码、激活函数softmax以及获取最大值索引等操作。
摘要由CSDN通过智能技术生成


  Tensorflow是当下最流行的深度学习框架之一, Tensorflow可以分为tensor(张量)和flow(流)两部分。不得不说 这个老师讲的是真的好呀,又基础又详细,很适合入门(keng)新手。

Tensor(张量)

  张量就是一个多维数组,用阶表示张量的维度。简单判断张量是几阶的方法:有几个[ ]就是几阶。


在这里插入图片描述

一、 创建张量

  张量的创建可通过直接创建和由numpy数组转换,此外还有一些常用的特殊张量方法:

1. 直接创建

  tf.constant(张量内容,dtype=数据类型)

import tensorflow as tf
t=tf.constant([2,3],dtype=tf.int64)#创建一个一阶张量
print(t)
>>tf.Tensor([2 3], shape=(2,), dtype=int64)

2.用numpy数据类型转换为tensor类型

  tf.convert_to_tensor(数据名,dtype=数据类型)

import tensorflow as tf
import numpy as np
a=np.arange(0,5)
t=tf.convert_to_tensor(a,dtype=tf.int64)#将一维数组转化为一维张量
print(a,t)
>>[0 1 2 3 4] tf.Tensor([0 1 2 3 4], shape=(5,), dtype=int64)

3.创建特殊的张量

① 全为0的张量:维度如何表示:一维直接填一个数字,二维用[行,列],多维用[n,m,j,k……]

#全为0的张量
tf.zeros(3)#创建一维零张量:只需要指定张量内容中0的个数
tf.zeros([2,3])#二维
>><tf.Tensor: shape=(3,), dtype=float32, numpy=array([0., 0., 0.], dtype=float32)>
  <tf.Tensor: shape=(2, 3), dtype=float32, numpy=array([[0., 0., 0.],
                                                        [0., 0., 0.]], dtype=float32)>

② 全为1的张量:维度同上

#全为1的张量
tf.ones(3)
>><tf.Tensor: shape=(3,), dtype=float32, numpy=array([1., 1., 1.], dtype=float32)>

③ 全为指定值的张量:tf.fill(维度,指定值)

#全为指定值的张量
tf.fill([2,3],1)
>><tf.Tensor: shape=(2, 3), dtype=int32, numpy=array([[1, 1, 1],
                                                      [1, 1<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值