Tensorflow
Tensorflow是当下最流行的深度学习框架之一, Tensorflow可以分为tensor(张量)和flow(流)两部分。不得不说 这个老师讲的是真的好呀,又基础又详细,很适合入门(keng)新手。
Tensor(张量)
张量就是一个多维数组,用阶表示张量的维度。简单判断张量是几阶的方法:有几个[ ]就是几阶。
一、 创建张量
张量的创建可通过直接创建和由numpy数组转换,此外还有一些常用的特殊张量方法:
1. 直接创建
tf.constant(张量内容,dtype=数据类型)
import tensorflow as tf
t=tf.constant([2,3],dtype=tf.int64)#创建一个一阶张量
print(t)
>>tf.Tensor([2 3], shape=(2,), dtype=int64)
2.用numpy数据类型转换为tensor类型
tf.convert_to_tensor(数据名,dtype=数据类型)
import tensorflow as tf
import numpy as np
a=np.arange(0,5)
t=tf.convert_to_tensor(a,dtype=tf.int64)#将一维数组转化为一维张量
print(a,t)
>>[0 1 2 3 4] tf.Tensor([0 1 2 3 4], shape=(5,), dtype=int64)
3.创建特殊的张量
① 全为0的张量:维度如何表示:一维直接填一个数字,二维用[行,列],多维用[n,m,j,k……]
#全为0的张量
tf.zeros(3)#创建一维零张量:只需要指定张量内容中0的个数
tf.zeros([2,3])#二维
>><tf.Tensor: shape=(3,), dtype=float32, numpy=array([0., 0., 0.], dtype=float32)>
<tf.Tensor: shape=(2, 3), dtype=float32, numpy=array([[0., 0., 0.],
[0., 0., 0.]], dtype=float32)>
② 全为1的张量:维度同上
#全为1的张量
tf.ones(3)
>><tf.Tensor: shape=(3,), dtype=float32, numpy=array([1., 1., 1.], dtype=float32)>
③ 全为指定值的张量:tf.fill(维度,指定值)
#全为指定值的张量
tf.fill([2,3],1)
>><tf.Tensor: shape=(2, 3), dtype=int32, numpy=array([[1, 1, 1],
[1, 1<