基于Matlab的IMM雷达多目标跟踪

UKF滤波器在动态定位中的应用:基于MATLAB实现
本文介绍了使用卡尔曼滤波(UKF)算法在测量数据融合中对匀速和匀加速运动模型进行实时跟踪的方法。通过加载量测数据和真实值数据,展示了如何初始化UKF参数、计算转移概率及一阶和二阶统计特性。链接提供了一个完整的MATLAB代码示例。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

clear all;
clc
close all
load Measure.mat%加载量测数据
load Real.mat%加载真实值数据
Z=TimeRPhi(2:3,:);%量测值
Xr=TXYdXdYAxAyTPhi;%真值
 
T=0.1;
pai=[0.8 0.2;0.1 0.9];  %定义一步转移概率矩阵
miu_CV=0;            %匀速运动模型在初始时刻正确的概率
miu_CA=1;            %匀加速运动模型在初始时刻正确概率

%UKF滤波器初始化
alf=0.001;
beta=2;
i=6;
a=((alf)^2-1)*i;
Wm0=a/(i+a);
Wc0=a/(i+a)+(1-(alf)^2+beta);
Wm=1/(2*(i+a));  %求一阶统计特性时的权系数
Wc=1/(2*(i+a));  %求二阶统计特性时的权系数

完整代码链接:https://pan.baidu.com/s/16IQHvZxHlyZJjNgk593ziQ

提取码:3eev

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值