



clear all;
clc
close all
load Measure.mat%加载量测数据
load Real.mat%加载真实值数据
Z=TimeRPhi(2:3,:);%量测值
Xr=TXYdXdYAxAyTPhi;%真值
T=0.1;
pai=[0.8 0.2;0.1 0.9]; %定义一步转移概率矩阵
miu_CV=0; %匀速运动模型在初始时刻正确的概率
miu_CA=1; %匀加速运动模型在初始时刻正确概率
%UKF滤波器初始化
alf=0.001;
beta=2;
i=6;
a=((alf)^2-1)*i;
Wm0=a/(i+a);
Wc0=a/(i+a)+(1-(alf)^2+beta);
Wm=1/(2*(i+a)); %求一阶统计特性时的权系数
Wc=1/(2*(i+a)); %求二阶统计特性时的权系数
完整代码链接:https://pan.baidu.com/s/16IQHvZxHlyZJjNgk593ziQ
提取码:3eev
UKF滤波器在动态定位中的应用:基于MATLAB实现
本文介绍了使用卡尔曼滤波(UKF)算法在测量数据融合中对匀速和匀加速运动模型进行实时跟踪的方法。通过加载量测数据和真实值数据,展示了如何初始化UKF参数、计算转移概率及一阶和二阶统计特性。链接提供了一个完整的MATLAB代码示例。
584

被折叠的 条评论
为什么被折叠?



