ArcGIS中计算点与线之间距离的两种方法

本文介绍了如何在ArcGIS中通过近邻分析和欧氏距离工具计算南京市村庄点位到公路网络的距离。首先,合并并投影公路数据,然后使用近邻分析计算测地线距离,并将结果导出。接着,运用欧氏距离工具生成距离栅格,再通过值提取至点工具获取精确距离。结果表明,两种方法略有差异,但不影响实际应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据准备:某地图软件下载的南京市域范围内村庄点位、公路网络(这里简单介绍下公路和城市道路的区别:①功能不同,公路主要是连接城市间、城乡间、乡村间供汽车行驶的公共道路,为区域间的交通联系服务,而城市道路主要是满足城市内部生活和交通需求的,可以分为生活性道路、交通型道路等等;②主管部门不同,公路是交通行政主管部门下属的部门修建的,城市道路是城市建设行政主管部门修建的;③位置不同,城市道路必定位于城市规划区范围内,是为城市自身服务的,公路不一定位于城市规划区范围内,其主体部分多位于城市外围。其它的还有设计标准、分级标准等不同就不细说了),以上两个数据在GIS中就代表了点和线要素。

操作步骤:打开ArcGIS,加载数据,一看这个村庄点位的数据质量就不太行(数量太少了),现在网络上的数据质量参差不齐,想要获得一份完美的数据几乎是不可能的。不过用来演示足够了哈哈哈。

1.通过近邻分析计算村庄点位到各级交通路网的距离

首先,用合并工具将各级道路合并,然后将合并得到的图层进行投影处理,涉及到实际距离的分析必须用投影坐标系。

打开近邻分析工具,首先看一下ArcMAP的帮助文档对该工具的说明,插图已经介绍的很详细了。参数选择:输入要素为村庄点图层,邻近要素为合并的南京市公路投影图层,位置和角度根据自己需要勾选,这里用不到就不选了,然后点击确定。

这里要选择测地线距离(单位是米)

打开村庄点图层,可以发现在自动添加了两列字段最邻近值的编号和最邻近点的距离,如果需要拿到excel里做进一步处理在当前页面导出数据就可以了。

2.通过欧氏距离计算村庄点位到各级交通路网的距离

打开欧氏距离工具,同样先查看它的帮助文档,似乎有点较难理解,主要就是通过栅格像元来计算两者之间的距离

这里为了计算的更精确,将栅格像元大小设的小一点,这里我设置10有点过小了,运行失败,建议100这样,生成的欧氏距离栅格如下。

下面需要用到值提取至点工具,输入点要素选择南京市村庄点位,输入栅格选择上一步欧氏距离计算出的栅格图像,可以勾选在点位置上插值(官方解释:未选中—不应用任何插值法;将使用像元中心值。这是默认设置。 选中—将使用双线性插值法根据相邻像元的有效值计算像元值。 除非所有相邻像元都为 NoData,否则会在插值时忽略 NoData 值),所以选中的话可以利用插值使计算的结果更准确点。

 打开用“值提取至点工具”生成的点数据的属性表,可以发现最后面多了一个字段,就是通过欧式距离计算出来的距离。与前一个字段近邻分析计算出的距离相比略微有点差距,但影响不大。更多操作请关注公众号“不知名的小GISer”

 

### ArcGIS面要素的相关性分析方法 #### 使用空间连接进行初步关联 为了理解源和面要素之间的关系,可以先通过 `Spatial Join` 工具建立两者间的联系。此工具允许根据几何位置将来自两个图层的信息组合在一起[^1]。 ```python import arcpy # 设置工作环境 arcpy.env.workspace = "path_to_workspace" # 定义输入数据路径 point_layer = "points.shp" polygon_layer = "polygons.shp" # 执行空间连接操作 output_join_feature = "spatial_joined_points.shp" arcpy.SpatialJoin_analysis(target_features=point_layer, join_features=polygon_layer, out_feature_class=output_join_feature) ``` #### 应用聚类和异常值分析 对于更深入的空间模式探索,利用 `Cluster and Outlier Analysis (Anselin Local Moran's I)` 可以帮助识别哪些区域内的呈现出聚集特性或是离群状态,这有助于揭示潜在的影响因素或机制[^3]。 #### 进行热分析 采用 `Hot Spot Analysis (Getis-Ord Gi*)` 来定位那些存在明显高密度或者低密度现象的地区——即所谓的“热”和“冷”。这对于发现特定类型的是否倾向于集中在某些面上非常有用。 #### 统计汇总功能的应用 如果目的是量化描述每个多边形内部有多少个,则可以直接应用聚合统计的方法。例如,在 Geoprocessing Tools 下找到 Summary Statistics 或者 Frequency 功能,按照多边形 ID 对落在其范围内的所有的数量或其他属性求平均值、总和等指标[^2]。 ```sql -- SQL查询示例用于计算每个面内的数量 SELECT polygon_id, COUNT(*) AS point_count FROM spatial_joined_table GROUP BY polygon_id; ``` 上述几种方式提供了不同层次上探讨状分布同面域之间相互作用的可能性,并且可以根据具体需求灵活选用最合适的策略来进行进一步的研究。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力学习GIS1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值