给定一个长度为N的数组,找出一个最长的单调自增子序列(不一定连续,但是顺序不能乱)。例如:给定一个长度为6的数组A{5, 6, 7, 1, 2, 8},则其最长的单调递增子序列为{5,6,7,8},长度为4.
这边给出动态规划DP数组 的算法:首先将问题转换,dp[i]表示以A[i]结尾的最长递增子序列(注意:这边与最长公共子串不一样,子序列可以是夹断的序列)根据数学归纳思想一般到特殊:可以先假设i之前的子序列长度已知,那么如何求dp[i]?
动态转移方程为:
!!可以想象为当前的dp值为之前<A[i]的数据的dp数组的最大值+1
代码实现:
int data[] = {10,9,2,5,3,7,101,18};
int dp[] = {1,1,1,1,1,1,1,1};
for(int i = 0;i < 8;i ++)
{
for(int j = 0;j < i;j ++)
{
if(data[i]>data[j])
{
dp[i] = max(dp[i],dp[j]+1);
}
}
}
dp的初始化为1,即本身A[i]可为一个子序列