动态规划小题——最长递增子序列

"本文介绍了如何使用动态规划算法寻找一个数组中最长的单调递增子序列。通过动态转移方程,我们可以更新每个元素的dp值,表示以该元素结尾的最长递增子序列的长度。例如,在数组{5, 6, 7, 1, 2, 8}
摘要由CSDN通过智能技术生成

      给定一个长度为N的数组,找出一个最长的单调自增子序列(不一定连续,但是顺序不能乱)。例如:给定一个长度为6的数组A{5, 6, 7, 1, 2, 8},则其最长的单调递增子序列为{5,6,7,8},长度为4.

这边给出动态规划DP数组 的算法:首先将问题转换,dp[i]表示以A[i]结尾的最长递增子序列(注意:这边与最长公共子串不一样,子序列可以是夹断的序列)根据数学归纳思想一般到特殊:可以先假设i之前的子序列长度已知,那么如何求dp[i]?

动态转移方程为:

f = max(dp[i],dp[j]+1) !!可以想象为当前的dp值为之前<A[i]的数据的dp数组的最大值+1

代码实现:

int data[] = {10,9,2,5,3,7,101,18};
  int dp[] = {1,1,1,1,1,1,1,1};
  
  for(int i = 0;i < 8;i ++)
  {
  	for(int j = 0;j < i;j ++)
  	{
  		if(data[i]>data[j])
  		{
  			dp[i] = max(dp[i],dp[j]+1);
		  }
	  }
  }

dp的初始化为1,即本身A[i]可为一个子序列

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值