参考链接:https://blog.csdn.net/u010592995/article/details/77882183
https://blog.csdn.net/Biegeda/article/details/78494881
重叠相加法(OLA)
1、将x(n)分段,每段长为M,保证M接近N即可,然后将xk(n)补零延长到L=M+N−1,计算L点FFT得到XK(K)
2、将h(n)补零延长至L=M+N−1,计算L点FFT得到H(K)。
3、计算yk(k)=XK(K)∗H(K),然后求L点的IFFT,得到yk(K)
观察可以发现,每段xk(n)长为M,恢复得到的yk(K)长为L,L>M,那怎么将每段yk(K)拼接起来呢,方法为在还原的时候将重叠部分相加就可以了,这也是重叠相加法名字的由来。
圆周卷积
也叫循环卷积,两个长度为N的有限场序列x(n)和h(n)的循环卷积定义为
即循环卷积相当于周期延拓后的序列x˜(n)和h˜(n)做周期卷积后再取主值区间,若x(n)和h(n)的离散傅里叶变换为X(K)和H(K),则有
即时域中的循环卷积对应于其离散傅里叶变换的乘积,循环卷积的结果y(n)长度为N。
时域中的循环卷积对应于其离散傅里叶变换的乘积
线性卷积
通常所说的卷积就是指线性卷积,设x(n)、h(n)长度分别为M和N,则它们的线性卷积结果为
重叠保留法(OLS)
将x(n)分段,每段长为M,保证M接近N即可,然后 将每段xk(n)向前多取N−1个点,第一段前面补N−1个0,则每段xk(n)长为L=M+N−1,计算L点FFT得到XK(K)
将h(n)补零延长至L=M+N−1,计算L点FFT得到H(K)。
计算yk(k)=XK(K)∗H(K),然后求L点的IFFT,得到yk(K)。分析下上面的步骤,对比下线性卷积与圆周卷积:
线性卷积:
xk(n):L=M+N−1
h:N
yk(n):M+2N−2
圆周卷积:
XK(K):L=M+N−1
H(K):L=M+N−1
Yk(K):L=M+N−1
可以看到线性卷积的长度(M+2N−2)>圆周卷积长度(M+N−1),由线性卷积与圆周卷积的关系可知当圆周卷积长度小于线性卷积长度时会发生混叠,那就在恢复的时候,丢掉前面混叠的部分(M+2N−2)-(M+N−1)=N−1。
总结来说,此方法需x(n)分段时每两段之间需要重叠N−1个值(实际上大于该值都可以,但取N−1时最节省运算量),然后对所求的yk(n)去除前N−1个点。本质就是直接删去0≤n≤N−2的yk(n),只保留N−1≤n≤K−1的yk(n),因此在对分段时需要对x(n)重叠分段,保证对于每个n都有满足N−1≤n≤K−1的xk(n)