A , B , C , . . . A,B,C,... A,B,C,...表示随机事件, U U U表示必然事件, V V V表示不可能事件
随机事件的频率可以看作是概率的表现
随机事件的每一个可能出现、不可再分的结果叫做样本点,用
ω
\omega
ω表示;所有样本点构成的集合叫做样本空间
Ω
\Omega
Ω
Ω
=
{
ω
1
,
ω
2
,
.
.
.
,
ω
n
}
\Omega=\{\omega_1,\omega_2,...,\omega_n\}
Ω={ω1,ω2,...,ωn}
任一随机事件是样本空间的子集,必然事件
U
U
U就是样本空间
Ω
\Omega
Ω,不可能事件
V
V
V就是空集
∅
\emptyset
∅
事件的关系及运算
A ∪ B A\cup B A∪B
A ∩ B o r A B A\cap B\ or\ AB A∩B or AB
A = B A=B A=B
A B = ∅ AB=\emptyset AB=∅(互不相容 互斥)
A = B ‾ o r B = A ‾ A=\overline{B}\ or\ B=\overline{A} A=B or B=A (对立/互逆)
∪ i = 1 n A i = Ω \cup^n_{i=1}A_i=\Omega ∪i=1nAi=Ω 完备事件组,更重要的是互不相容的完备事件组
交换律
A
∪
B
=
B
∪
A
A
B
=
B
A
A\cup B=B\cup A\\ AB=BA
A∪B=B∪AAB=BA
结合率
(
A
∪
B
)
∪
C
=
A
∪
(
B
∪
C
)
(
A
B
)
C
=
A
(
B
C
)
(A\cup B)\cup C=A\cup (B\cup C)\\ (AB)C=A(BC)
(A∪B)∪C=A∪(B∪C)(AB)C=A(BC)
分配律
A
(
B
∪
C
)
=
A
B
∪
A
C
A
∪
(
B
C
)
=
(
A
∪
B
)
∩
(
A
∪
C
)
A(B\cup C)=AB\cup AC\\ A\cup(BC)=(A\cup B)\cap(A\cup C)
A(B∪C)=AB∪ACA∪(BC)=(A∪B)∩(A∪C)
德摩根率
A
∪
B
‾
=
A
‾
B
‾
A
B
‾
=
A
‾
∪
B
‾
\overline{A\cup B}=\overline{A}\overline{B}\\ \overline{AB}=\overline{A}\cup \overline{B}
A∪B=ABAB=A∪B
乘法原理与加法原理
乘法原理: r r r个步骤、每步骤 m i m_i mi种方法,总方法数 m 1 m 2 . . . m r m_1m_2...m_r m1m2...mr
加法原理: r r r种方式、每方式 m i m_i mi种方法,总方法数 m 1 + m 2 + . . . + m r m_1+m_2+...+m_r m1+m2+...+mr
排列组合
A n m = n ( n − 1 ) . . . ( n − m + 1 ) A n n = P n = n ! C n m = A n m P m = n ! m ! ( n − m ) ! A_n^m=n(n-1)...(n-m+1)\\ A_n^n=P_n=n!\\ \\ C_n^m=\frac{A_n^m}{P_m}=\frac{n!}{m!(n-m)!} Anm=n(n−1)...(n−m+1)Ann=Pn=n!Cnm=PmAnm=m!(n−m)!n!
排列组合的一些公式及推导(非常详细易懂)_weixin_30598225的博客-CSDN博客
概率加法定理
若 A B = ∅ AB=\emptyset AB=∅, P ( A + B ) = P ( A ) + P ( B ) P(A+B)=P(A)+P(B) P(A+B)=P(A)+P(B)
P
(
A
∪
B
)
=
P
(
A
)
+
P
(
B
)
−
P
(
A
B
)
P(A\cup B)=P(A)+P(B)-P(AB)
P(A∪B)=P(A)+P(B)−P(AB)
P
(
∪
i
=
1
n
A
i
)
=
∑
i
=
1
n
P
(
A
i
)
−
∑
1
≤
i
<
j
≤
n
P
(
A
i
A
j
)
+
∑
1
≤
i
<
j
<
k
≤
n
P
(
A
i
A
j
A
k
)
+
.
.
.
+
(
−
1
)
n
−
1
P
(
A
1
A
2
.
.
.
A
n
)
P(\cup_{i=1}^nAi)=\sum_{i=1}^nP(A_i)-\sum_{1\leq i<j\leq n}P(A_iA_j)+\sum_{1\leq i<j<k\leq n}P(A_iA_jA_k)+...+(-1)^{n-1}P(A_1A_2...A_n)
P(∪i=1nAi)=i=1∑nP(Ai)−1≤i<j≤n∑P(AiAj)+1≤i<j<k≤n∑P(AiAjAk)+...+(−1)n−1P(A1A2...An)
条件概率公式
P ( A ∣ B ) = P ( A B ) P ( B ) P(A|B)=\frac{P(AB)}{P(B)} P(A∣B)=P(B)P(AB)
概率的乘积
P ( A B ) = P ( A ∣ B ) P ( B ) P(AB)=P(A|B)P(B) P(AB)=P(A∣B)P(B)
P ( A 1 A 2 . . . A n ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) . . . P ( A n ∣ A 1 A 2 . . . A n − 1 ) P(A_1A_2...A_n)=P(A_1)P(A_2|A_1)P(A_3|A_1A_2)...P(A_n|A_1A_2...A_{n-1}) P(A1A2...An)=P(A1)P(A2∣A1)P(A3∣A1A2)...P(An∣A1A2...An−1)
全概率公式
两步随机使用
P ( A ) = ∑ i = 1 n P ( B i ) P ( A ∣ B i ) P(A)=\sum_{i=1}^{n}P(B_i)P(A|B_i) P(A)=i=1∑nP(Bi)P(A∣Bi)
贝叶斯公式
P ( B i ∣ A ) = P ( A ∣ B i ) P ( B i ) ∑ j = 1 n P ( B j ) P ( A ∣ B j ) = P ( A ∣ B i ) P ( B i ) P ( A ) P(B_i|A)=\frac{P(A|B_i)P(B_i)}{\sum_{j=1}^{n}P(B_j)P(A|B_j)}=\frac{P(A|B_i)P(B_i)}{P(A)} P(Bi∣A)=∑j=1nP(Bj)P(A∣Bj)P(A∣Bi)P(Bi)=P(A)P(A∣Bi)P(Bi)
随机事件的独立性
P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B)
∅ \emptyset ∅与 Ω \Omega Ω与任何随机事件独立
两两独立不能证明相互独立,相互独立不能证明相互独立
若
A
1
,
A
2
,
.
.
.
,
A
n
A_1,A_2,...,A_n
A1,A2,...,An相互独立:
P
(
∪
i
=
1
n
A
i
)
=
1
−
P
(
A
1
‾
)
P
(
A
2
‾
)
.
.
.
P
(
A
n
‾
)
P(\cup_{i=1}^nA_i)=1-P(\overline{A_1})P(\overline{A_2})...P(\overline{A_n})
P(∪i=1nAi)=1−P(A1)P(A2)...P(An)