随机事件及其概率


A , B , C , . . . A,B,C,... A,B,C,...表示随机事件, U U U表示必然事件, V V V表示不可能事件

随机事件的频率可以看作是概率的表现

随机事件的每一个可能出现、不可再分的结果叫做样本点,用 ω \omega ω表示;所有样本点构成的集合叫做样本空间 Ω \Omega Ω
Ω = { ω 1 , ω 2 , . . . , ω n } \Omega=\{\omega_1,\omega_2,...,\omega_n\} Ω={ω1,ω2,...,ωn}
任一随机事件是样本空间的子集,必然事件 U U U就是样本空间 Ω \Omega Ω,不可能事件 V V V就是空集 ∅ \emptyset

事件的关系及运算

A ∪ B A\cup B AB

A ∩ B   o r   A B A\cap B\ or\ AB AB or AB

A = B A=B A=B

A B = ∅ AB=\emptyset AB=(互不相容 互斥)

A = B ‾   o r   B = A ‾ A=\overline{B}\ or\ B=\overline{A} A=B or B=A (对立/互逆)

∪ i = 1 n A i = Ω \cup^n_{i=1}A_i=\Omega i=1nAi=Ω 完备事件组,更重要的是互不相容的完备事件组


交换律
A ∪ B = B ∪ A A B = B A A\cup B=B\cup A\\ AB=BA AB=BAAB=BA
结合率
( A ∪ B ) ∪ C = A ∪ ( B ∪ C ) ( A B ) C = A ( B C ) (A\cup B)\cup C=A\cup (B\cup C)\\ (AB)C=A(BC) (AB)C=A(BC)(AB)C=A(BC)
分配律
A ( B ∪ C ) = A B ∪ A C A ∪ ( B C ) = ( A ∪ B ) ∩ ( A ∪ C ) A(B\cup C)=AB\cup AC\\ A\cup(BC)=(A\cup B)\cap(A\cup C) A(BC)=ABACA(BC)=(AB)(AC)
德摩根率
A ∪ B ‾ = A ‾ B ‾ A B ‾ = A ‾ ∪ B ‾ \overline{A\cup B}=\overline{A}\overline{B}\\ \overline{AB}=\overline{A}\cup \overline{B} AB=ABAB=AB

乘法原理与加法原理

乘法原理: r r r个步骤、每步骤 m i m_i mi种方法,总方法数 m 1 m 2 . . . m r m_1m_2...m_r m1m2...mr

加法原理: r r r种方式、每方式 m i m_i mi种方法,总方法数 m 1 + m 2 + . . . + m r m_1+m_2+...+m_r m1+m2+...+mr

排列组合

A n m = n ( n − 1 ) . . . ( n − m + 1 ) A n n = P n = n ! C n m = A n m P m = n ! m ! ( n − m ) ! A_n^m=n(n-1)...(n-m+1)\\ A_n^n=P_n=n!\\ \\ C_n^m=\frac{A_n^m}{P_m}=\frac{n!}{m!(n-m)!} Anm=n(n1)...(nm+1)Ann=Pn=n!Cnm=PmAnm=m!(nm)!n!

排列组合的一些公式及推导(非常详细易懂)_weixin_30598225的博客-CSDN博客

概率加法定理

A B = ∅ AB=\emptyset AB= P ( A + B ) = P ( A ) + P ( B ) P(A+B)=P(A)+P(B) P(A+B)=P(A)+P(B)

P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A\cup B)=P(A)+P(B)-P(AB) P(AB)=P(A)+P(B)P(AB)
P ( ∪ i = 1 n A i ) = ∑ i = 1 n P ( A i ) − ∑ 1 ≤ i < j ≤ n P ( A i A j ) + ∑ 1 ≤ i < j < k ≤ n P ( A i A j A k ) + . . . + ( − 1 ) n − 1 P ( A 1 A 2 . . . A n ) P(\cup_{i=1}^nAi)=\sum_{i=1}^nP(A_i)-\sum_{1\leq i<j\leq n}P(A_iA_j)+\sum_{1\leq i<j<k\leq n}P(A_iA_jA_k)+...+(-1)^{n-1}P(A_1A_2...A_n) P(i=1nAi)=i=1nP(Ai)1i<jnP(AiAj)+1i<j<knP(AiAjAk)+...+(1)n1P(A1A2...An)

条件概率公式

P ( A ∣ B ) = P ( A B ) P ( B ) P(A|B)=\frac{P(AB)}{P(B)} P(AB)=P(B)P(AB)

概率的乘积

P ( A B ) = P ( A ∣ B ) P ( B ) P(AB)=P(A|B)P(B) P(AB)=P(AB)P(B)

P ( A 1 A 2 . . . A n ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) . . . P ( A n ∣ A 1 A 2 . . . A n − 1 ) P(A_1A_2...A_n)=P(A_1)P(A_2|A_1)P(A_3|A_1A_2)...P(A_n|A_1A_2...A_{n-1}) P(A1A2...An)=P(A1)P(A2A1)P(A3A1A2)...P(AnA1A2...An1)

全概率公式

两步随机使用

P ( A ) = ∑ i = 1 n P ( B i ) P ( A ∣ B i ) P(A)=\sum_{i=1}^{n}P(B_i)P(A|B_i) P(A)=i=1nP(Bi)P(ABi)

贝叶斯公式

P ( B i ∣ A ) = P ( A ∣ B i ) P ( B i ) ∑ j = 1 n P ( B j ) P ( A ∣ B j ) = P ( A ∣ B i ) P ( B i ) P ( A ) P(B_i|A)=\frac{P(A|B_i)P(B_i)}{\sum_{j=1}^{n}P(B_j)P(A|B_j)}=\frac{P(A|B_i)P(B_i)}{P(A)} P(BiA)=j=1nP(Bj)P(ABj)P(ABi)P(Bi)=P(A)P(ABi)P(Bi)

全概率公式、贝叶斯公式 - 知乎 (zhihu.com)

随机事件的独立性

P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B)

∅ \emptyset Ω \Omega Ω与任何随机事件独立

两两独立不能证明相互独立,相互独立不能证明相互独立

A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An相互独立:
P ( ∪ i = 1 n A i ) = 1 − P ( A 1 ‾ ) P ( A 2 ‾ ) . . . P ( A n ‾ ) P(\cup_{i=1}^nA_i)=1-P(\overline{A_1})P(\overline{A_2})...P(\overline{A_n}) P(i=1nAi)=1P(A1)P(A2)...P(An)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值