项目:利用adaboost对Employee满意度进行分类

项目介绍:利用adaboost对Employee满意度进行分类

0.整理数据

从https://www.datafountain.cn/datasets/12下载IBM员工满意度的虚拟数据,并做好员工满意度类型标签,并整理成txt档案。
在这里插入图片描述

1.分析目的

对员工满意度进行预测分类。

2. 分析代码

从实际分类效果来看,adaboost在测试集数据的错误率为20%,正确率约80%,测试效果还不错。

import pandas as pd
import numpy as np
%matplotlib inline
%matplotlib notebook
import matplotlib.pyplot as plt
from numpy import *
import adaboost

#导入训练数据
datArr,labelArr = adaboost.loadDataSet('HR_Employee_traindata2.txt')

#建立分类器
classifierArray,_ = adaboost.adaBoostTrainDS(datArr,labelArr,10)
#total error:  0.1891156462585034
#total error:  0.1891156462585034
#total error:  0.1891156462585034
#total error:  0.1891156462585034
#total error:  0.1891156462585034
#total error:  0.1891156462585034
#total error:  0.1891156462585034
#total error:  0.1891156462585034
#total error:  0.1891156462585034
#total error:  0.1891156462585034

classifierArray
[{'dim': 0, 'thresh': 13.8, 'ineq': 'lt', 'alpha': 0.727883366967329},
 {'dim': 24, 'thresh': 2.4, 'ineq': 'gt', 'alpha': 0.12463342761307217},
 {'dim': 10, 'thresh': 2.2, 'ineq': 'gt', 'alpha': 0.1003746703517236},
 {'dim': 20, 'thresh': 3.1, 'ineq': 'lt', 'alpha': 0.0963189756522224},
 {'dim': 8, 'thresh': 79.0, 'ineq': 'gt', 'alpha': 0.0949072890789229},
 {'dim': 4, 'thresh': 2.2, 'ineq': 'gt', 'alpha': 0.08407359046211836},
 {'dim': 3, 'thresh': 1.0, 'ineq': 'lt', 'alpha': 0.0960231041915813},
 {'dim': 26, 'thresh': 6.8, 'ineq': 'lt', 'alpha': 0.0948392081206876},
 {'dim': 4, 'thresh': 3.0, 'ineq': 'lt', 'alpha': 0.06227497331058203},
 {'dim': 18,  'thresh': 20.799999999999997,  'ineq': 'gt',  'alpha': 0.07452043991609442}]

#导入测试数据
testArr,testLabelArr = adaboost.loadDataSet('HR_Employee_testdata2.txt')

#进行分类
prediction10 = adaboost.adaClassify(testArr,classifierArray)

#错误统计
errArr=mat(ones((735,1)))
errnum = errArr[prediction10!=mat(testLabelArr).T].sum()
errnum
#150.0

#错误率
errnum/len(errArr)
#0.20408163265306123

3.adaboost源码

#coding=utf-8

from numpy import *
def loadSimpData():
    datMat = matrix([[ 1. ,  2.1],
        [ 2. ,  1.1],
        [ 1.3,  1. ],
        [ 1. ,  1. ],
        [ 2. ,  1. ]])
    classLabels = [1.0, 1.0, -1.0, -1.0, 1.0]
    return datMat,classLabels

#对数据进行分类
def stumpClassify(dataMatrix,dimen,threshVal,threshIneq):#just classify the data
    retArray = ones((shape(dataMatrix)[0],1))
    if threshIneq == 'lt':
        retArray[dataMatrix[:,dimen] <= threshVal] = -1.0
    else:
        retArray[dataMatrix[:,dimen] > threshVal] = -1.0
    return retArray

#找到最佳决策树
def buildStump(dataArr,classLabels,D):
    dataMatrix = mat(dataArr); labelMat = mat(classLabels).T
    m,n = shape(dataMatrix)
    numSteps = 10.0; bestStump = {}; bestClasEst = mat(zeros((m,1)))
    minError = inf #最小错误率,开始初始化为无穷大
    for i in range(n):#遍历数据集所有特征
        rangeMin = dataMatrix[:,i].min(); rangeMax = dataMatrix[:,i].max();
        stepSize = (rangeMax-rangeMin)/numSteps #考虑数据特征,计算步长
        for j in range(-1, int(numSteps) + 1):  #遍历不同步长时的情况
            for inequal in ['lt', 'gt']:  #大于/小于阈值 切换遍历
                threshVal = (rangeMin + float(j) * stepSize) #设置阈值
                predictedVals = stumpClassify(dataMatrix, i, threshVal,inequal) #分类预测
                errArr = mat(ones((m, 1)))#初始化全部为1(初始化为全部不相等)
                errArr[predictedVals == labelMat] = 0#预测与label相等则为0,否则为1
                # 分类器与adaBoost交互
                # 权重向量×错误向量=计算权重误差(加权错误率)
                weightedError = D.T * errArr
                if weightedError < minError:
                    minError = weightedError #保存当前最小的错误率
                    bestClasEst = predictedVals.copy() #预测类别
                    #保存该单层决策树
                    bestStump['dim'] = i
                    bestStump['thresh'] = threshVal
                    bestStump['ineq'] = inequal
    return bestStump, minError, bestClasEst #返回字典,错误率和类别估计

#完整adaboost算法
def adaBoostTrainDS(dataArr,classLabels,numIt=40): #numIt 用户设置的迭代次数
    weakClassArr = []
    m = shape(dataArr)[0]#m表示数组行数
    D = mat(ones((m,1))/m)   #初始化每个数据点的权重为1/m
    aggClassEst = mat(zeros((m,1)))#记录每个数据点的类别估计累计值
    for i in range(numIt):
        # 建立一个单层决策树,输入初始权重D
        bestStump,error,classEst = buildStump(dataArr,classLabels,D)
        print ("D:",D.T)
        # alpha表示本次输出结果权重
        alpha = float(0.5*log((1.0-error)/max(error,1e-16)))#1e-16防止零溢出
        bestStump['alpha'] = alpha  #alpha加入字典
        weakClassArr.append(bestStump)     #字典加入列表
        print ("classEst: ",classEst.T)
        # 计算下次迭代的新权重D
        expon = multiply(-1*alpha*mat(classLabels).T,classEst)
        D = multiply(D,exp(expon))
        D = D/D.sum()
        # 计算累加错误率
        aggClassEst += alpha*classEst
        print ("aggClassEst: ",aggClassEst.T)
        aggErrors = multiply(sign(aggClassEst) != mat(classLabels).T,ones((m,1)))
        errorRate = aggErrors.sum()/m
        print ("total error: ",errorRate)
        if errorRate == 0.0: break#错误率为0时 停止迭代
    return weakClassArr,aggClassEst

#测试adaboost
def adaClassify(datToClass,classifierArr):
    dataMatrix = mat(datToClass)#待分类样例 转换成numpy矩阵
    m = shape(dataMatrix)[0]
    aggClassEst = mat(zeros((m,1)))
    for i in range(len(classifierArr)):#遍历所有弱分类器
        classEst = stumpClassify(dataMatrix,\
                                 classifierArr[i]['dim'],\
                                 classifierAr[i]['thresh'],\
                                 classifierArr[i]['ineq'])
        aggClassEst += classifierArr[i]['alpha']*classEst
        print (aggClassEst) #输出每次迭代侯变化的结果
    return sign(aggClassEst) #返回符号,大于0返回1,小于0返回-1

#在难数据集上应用
#自适应数据加载函数
def loadDataSet(fileName):
    numFeat = len(open(fileName).readline().split('\t')) #get number of fields
    dataMat = []; labelMat = []
    fr = open(fileName)
    for line in fr.readlines():
        lineArr =[]
        curLine = line.strip().split('\t')
        for i in range(numFeat-1):
            lineArr.append(float(curLine[i]))
        dataMat.append(lineArr)
        labelMat.append(float(curLine[-1]))
    return dataMat,labelMat

4.百度硬盘分享

已将数据源和代码打包上传百度硬盘,若需要数据,请打赏任意金额并留下联系邮箱,将给予密码。
https://pan.baidu.com/s/1gP34nFySkN8QBQm5rqb77Q

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值