数学 | 分数或小数的模运算

最近在计算 Z p Z_{p} Zp 上的椭圆曲线时需要进行对分数取模的计算,具体计算过程如下:

已知: p = 23 , a = 9 , b = 17 , x = 16 , y = 5 p=23,a=9,b=17,x=16,y=5 p=23,a=9,b=17,x=16,y=5,根据公式 λ = ( 3 x 2 + a 2 y ) m o d    p \lambda=\left(\frac{3x^{2}+a}{2y}\right)\mod p λ=(2y3x2+a)modp,求 λ \lambda λ


λ = ( 3 x 2 + a 2 y ) m o d    p = ( 3 × 1 6 2 + 9 2 × 5 ) m o d    23 = ( 777 10 ) m o d    23 \lambda=\left(\frac{3x^{2}+a}{2y}\right)\mod p=\left(\frac{3\times16^{2}+9}{2\times5}\right)\mod 23=\left(\frac{777}{10}\right)\mod 23 λ=(2y3x2+a)modp=(2×53×162+9)mod23=(10777)mod23
10 λ = 777 m o d    23 = 18 m o d    23 10\lambda=777\mod 23=18\mod 23 10λ=777mod23=18mod23
设存在 x ( x ∈ Z ) x(x\in Z) x(xZ) 使得: 10 λ = 23 x + 18 10\lambda=23x+18 10λ=23x+18

则满足 10 ∣ 23 x + 18 10|23x+18 10∣23x+18 的最小正整数 x = 4 x=4 x=4,此时可求得:
λ = 23 × 4 + 18 10 = 11 \lambda=\frac{23\times4+18}{10}=11 λ=1023×4+18=11

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值