离散数学 | 图论 五色定理证明

本文详细解释了平面图的五色定理,证明了任何简单连通平面图最多使用五种颜色着色,并通过归纳法和具体案例分析了着色过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

看来一下午终于看懂了,甚至差点睡过去…… 趁热打铁记录一下自己的理解。

平面图的五色定理

任意一个简单的连通平面图点着色至多五色

前置知识

一、 设 G 为一个至少有三个结点的连通平面图,则 G 中必有一个结点 u,u 的度数 deg(u)≤5。

五色定理 证明

Step1:证明简单连通平面图 G 中一定存在一个顶点,其度数小于等于 5。

根据前置知识一得证。

Step2:归纳假设

当 |V|≤5 时:

此时可对每个顶点任意着色,总着色数显然不超过 5。

当 |V|>5 时:

一、 假设当 |V|=k 时,结论成立。

二、 当 |V|=k+1 时,由 Step1 可知,G 中必存在一点 u 满足 deg(u)≤5。将 u 从图 G 中删去,则 |V|=k+1-1=k 符合一中假设,G-u 可用 5 种颜色着色。

将 u 放回图中恢复图 G,对 u 的着色进行分类讨论:

  1. 【deg(u)<5】 或 【deg(u)=5 且点 u 连接的 5 个结点所着颜色小于 5】,则点 u 可着第 5 种颜色。
  2. deg(u)=5 且 点 u 连接的 5 个结点着 5 种不同的颜色。假设五种颜色分别为红、黄、蓝、白、绿:
    在这里插入图片描述
    约定图 G-u 中所有着红、黄色的结点组成红黄集,着白、绿色的结点组成白绿集。分情况讨论:
    • v 1 , v 3 v_1,v_3 v1,v3 属于红黄集导出的、G 的子图的、两个不同的连通分支。
      在这里插入图片描述
      v 1 v_1 v1 所在连通分支中的红、黄色对调,并不影响 G-u 的着色。则 u 点可着红色。
      此时图 G 可正常着色。
    • v 1 , v 3 v_1,v_3 v1,v3 属于红黄集导出的、G 的子图的、同一个连通分支,则 v 1 , v 3 v_1,v_3 v1,v3 之间必有一条由红黄集中结点构成的路 P,它加上 u 可构成一个回路 C(u,P,u)。
      在这里插入图片描述
      由于 G 是平面图,因此,回路 C 会将白绿集分成两个子集,分别位于 C 的内外。这样白绿集导出的子图至少有两个连通分支,从而将问题转换为上一类问题,即将 v 2 v_2 v2 所在连通分支中的白、绿色对调,并不影响 G-u 的着色。则 u 点可着白色。
      此时图 G 可正常着色。
    • v 1 , v 3 v_1,v_3 v1,v3 属于红黄集导出的、G 的子图的、同一个连通分支,则 v 1 , v 3 v_1,v_3 v1,v3 之间必有一条由红黄集中结点构成的路 P,它加上 u 可构成一个回路 C(u,P,u)。
      v 2 , v 4 v_2,v_4 v2,v4 属于白绿集导出的、G 的子图的、同一个连通分支,则 v 2 , v 4 v_2,v_4 v2,v4 之间必有一条由白绿集中结点构成的路 Q,它加上 u 可构成一个回路 C(u,Q,u)。
      在这里插入图片描述
      此时因为红黄集和白绿集组成的两个连通分支中结点不相邻,可直接将白色换为红色,绿色换位黄色。则 u 可着白色或绿色,图 G 总着色数为 4 小于 5。满足结论。

参考

【离散数学】图论 第七章(6) 图的结点着色和Welch Powell法、平面图着色、希伍德五色定理、四色定理-memcpy0-CSDN

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值