浙江大学《机器学习》MOOC课程笔记 支持向量机SVM(二)

本文详细介绍了拉格朗日乘子法在解决优化问题中的应用,特别是针对SVM的支持向量机优化问题。通过对原问题的改造,引入拉格朗日函数和对偶问题的概念,阐述了对偶定理和强对偶定理,解释了如何将SVM的原问题转化为对偶问题。同时,讨论了如何求解对偶问题中的参数αi和b,以及如何利用这些参数进行预测。最后,探讨了SVM训练和测试的流程,强调了核函数在简化计算中的作用。
摘要由CSDN通过智能技术生成

原问题(PRIME PROBLEM)和对偶问题(DUAL PROBLEM) [半懂不懂一知半解懵懵懂懂]

  • 拉格朗日乘子法

    Step.1原函数
    假设有K个不等式,m个等式
    在这里插入图片描述
    Step.2定义拉格朗日函数 L ( w , α , β ) L(w,\alpha,\beta) L(w,α,β)
    为每条约束条件添加拉格朗日乘子 α i ≥ 0 \alpha_i≥0 αi0

在这里插入图片描述
Step.3对偶函数

L ( w , α , β ) L(w,\alpha,\beta) L(w,α,β)遍历所有定义域上的 w w w,找到使 L ( w , α , β ) L(w,\alpha,\beta) L(w,α,β)最小的,同时将这个最小的函数值赋值给 θ ( α , β ) \theta(\alpha,\beta) θ(α,β) 在这里插入图片描述

  • 定理
    1.定理一:对偶定理(DUALITY THEOREM)在这里插入图片描述证明:
    在这里插入图片描述

引申:对偶差距(DUALITY GAP)
在这里插入图片描述

2.定理二:强对偶定理(STRONG DUALITY THEOREM)
在这里插入图片描述

转化为对偶问题

  • 将SVM的优化问题改造为原问题
    为了让改进至目前的SVM的优化问题满足强对偶定理,而原问题中的 g i ( w ) ≤ 0 g_i(w)≤0 gi(w)0,故首先要将SVM的两个限制条件由 ≥ 0 ≥0 0进行改造
    在这里插入图片描述在这里插入图片描述

此时原问题中的
在这里插入图片描述而不等式 g i ( w ) ≤ 0 g_i(w)≤0 gi(w)0被分成了两部分

在这里插入图片描述
由于问题中全为不等式,故不存在 h i ( w ) = 0 h _i(w)=0 hi(w)=0项。

按照对偶问题的定义将对偶问题写成如下形式:
在这里插入图片描述其中 α i , β i \alpha_i,\beta_i αi,βi分别是改造两个 g i ( w ) ≤ 0 g_i(w)≤0 gi(w)0条件的系数,类比于原问题中的拉格朗日乘子 α i \alpha_i αi

  • 如何将原问题化为对偶问题
    由于要对 ( w , δ i , b ) (w, δ _i,b) (w,δi,b)分别遍历求最小值,所以对三个变量分别求导并令导数 = 0 =0 =0(由于 w w w为向量,故使用向量求导准则)在这里插入图片描述
    将求得的三个式子带入表达式中,可以将SVM的原问题转化为对偶问题:
    在这里插入图片描述

算法流程 [这个好难懂诶(#`O′)]

1.如何求解上述对偶问题
2.基于对偶问题给出SVM算法的统一流程

  • 根据核函数的公式,只需要知道核函数的值,而无需知道具体的 ϕ ( x i ) , ϕ T ( x i ) \phi(x_i),\phi^T(x_i) ϕ(xi),ϕT(xi),带入公式求解出所有的 α i ( i = 1 \alpha_i(i=1 αi(i=1~ N ) N) N)后,可以根据在这里插入图片描述求出 w w w
    注意 由于 ϕ ( x i ) \phi(x_i) ϕ(xi)不知道是否具有显示表达式,所以 w w w也不知道是否具有显示表达式。

  • 如何求b
    首先,
    在这里插入图片描述

    其次,根据KKT条件,对所有的 i ( 1 i(1 i(1~ N ) N) N),可以得到两个 g i ( w ) g_i(w) gi(w)分式 = 0 =0 =0
    { β i δ i = 0 → ( c − α i ) δ i = 0 α i [ 1 + δ i − y i w T ϕ ( X i ) − y i b ] = 0 \left\{ \begin{aligned} &\beta_iδ_i=0 → (c-\alpha_i)δ_i=0& \\ &\alpha_i[1+δ_i-y_iw^T\phi(X_i)-y_ib]=0& \\ \end{aligned} \right. {βiδi=0(cαi)δi=0αi[1+δiyiwTϕ(Xi)yib]=0
    并且同时,如果对某个i, α i ≠ 0 \alpha_i≠0 αi=0 α i ≠ c \alpha_i≠c αi=c,则根据KKT条件,必有
    { δ i = 0 1 + δ i − y i w T ϕ ( X i ) − y i b = 0 \left\{ \begin{aligned} &δ_i=0 & \\ &1+δ_i-y_iw^T\phi(X_i)-y_ib=0& \\ \end{aligned} \right. {δi=01+δiyiwTϕ(Xi)yib=0

由于等式 1 + δ i − y i w T ϕ ( X i ) − y i b = 0 1+δ_i-y_iw^T\phi(X_i)-y_ib=0 1+δiyiwTϕ(Xi)yib=0中的项, y i w T ϕ ( X i ) = ∑ j = 1 N α i y i y j K ( X j , X i ) y_iw^T\phi(X_i)=\sum_{j=1}^N \alpha_iy_iy_jK(X_j,X_i) yiwTϕ(Xi)=j=1NαiyiyjK(Xj,Xi)
注意 如果 α i = 0 \alpha_i=0 αi=0,则该样本不会出现在公式的求和中出现,也就不会对 f ( x ) f(x) f(x)产生影响,如果 α i > 0 \alpha_i>0 αi0,则必有 y i f ( x i ) = 1 y_if(x_i)=1 yif(xi)=1,所对应的样本点位于最大间隔边界上,是一个支持向量。
所以只需要找到 0 < α i < c 0<\alpha_i<c 0<αi<c,那么 b b b的求解公式为:
在这里插入图片描述

  • 对于一个测试样本X,如何获得其预测的类别
    1.“核函数戏法”
    在这里插入图片描述2.只通过核函数,也能求得SVM算法最终预测的类别
    在这里插入图片描述3.SVM训练和测试的流程(基于对偶问题的求解)
    a.训练过程
    ①输入训练数据
    在这里插入图片描述

    ②求 α i ( i = 1 \alpha_i(i=1 αi(i=1~ N ) N) N)
    在这里插入图片描述

    ③求 b b b
    在这里插入图片描述

    b.测试过程
    在这里插入图片描述

课后思考题

在这里插入图片描述

浙江大学《机器学习》 mooc课程

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
浙江大学人工智能课程课件,内容有: Introduction Problem-solving by search( 4 weeks) Uninformed Search and Informed (Heuristic) Search (1 week) Adversarial Search: Minimax Search, Evaluation Functions, Alpha-Beta Search, Stochastic Search Adversarial Search: Multi-armed bandits, Upper Confidence Bound (UCB),Upper Confidence Bounds on Trees, Monte-Carlo Tree Search(MCTS) Statistical learning and modeling (5 weeks) Probability Theory, Model selection, The curse of Dimensionality, Decision Theory, Information Theory Probability distribution: The Gaussian Distribution, Conditional Gaussian distributions, Marginal Gaussian distributions, Bayes’ theorem for Gaussian variables, Maximum likelihood for the Gaussian, Mixtures of Gaussians, Nonparametric Methods Linear model for regression: Linear basis function models; The Bias-Variance Decomposition Linear model for classification : Basic Concepts; Discriminant Functions (nonprobabilistic methods); Probabilistic Generative Models; Probabilistic Discriminative Models K-means Clustering and GMM & Expectation–Maximization (EM) algorithm, BoostingThe Course Syllabus Deep Learning (4 weeks) Stochastic Gradient Descent, Backpropagation Feedforward Neural Network Convolutional Neural Networks Recurrent Neural Network (LSTM, GRU) Generative adversarial network (GAN) Deep learning in NLP (word2vec), CV (localization) and VQA(cross-media) Reinforcement learning (1 weeks) Reinforcement learning: introduction
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值