acwing-7. 混合背包问题(混合背包)

这篇博客介绍了如何使用动态规划解决背包问题,包括01背包、完全背包和多重背包的特殊情况。通过输入物品的体积、价值和可用次数,程序计算出在不超过背包容量的前提下,能实现的最大价值。输入样例和输出样例展示了算法的正确性,数据范围和限制条件确保了问题的可行性。
摘要由CSDN通过智能技术生成

有 N 种物品和一个容量是 V 的背包。

物品一共有三类:

第一类物品只能用1次(01背包);
第二类物品可以用无限次(完全背包);
第三类物品最多只能用 si 次(多重背包);
每种体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。

si=−1 表示第 i 种物品只能用1次;
si=0 表示第 i 种物品可以用无限次;
si>0 表示第 i 种物品可以使用 si 次;
输出格式
输出一个整数,表示最大价值。

数据范围
0<N,V≤1000
0<vi,wi≤1000
−1≤si≤1000

输入样例
4 5
1 2 -1
2 4 1
3 4 0
4 5 2
输出样例:
8
#include<bits/stdc++.h>
using namespace std;
const int N = 1010;
int f[N],g[N];
int q[N];
int main(){
    int n,m;
    cin>>n>>m;
    int v,w,s;
    memset(f,0,sizeof f);
    for(int i = 0;i < n;i ++){
        cin>>v>>w>>s;
        if(s == -1){
            for(int j = m;j >= v;j --){
                f[j] = max(f[j],f[j - v] + w);
            }
        }
        else if(s == 0){
            for(int j = v;j <= m;j ++){
                f[j] = max(f[j],f[j - v] + w);
            }
        }else{
            memcpy(g,f,sizeof f);
            for(int j = 0;j < v;j ++){
                int hh = 0,tt = 0;
                for(int k = j;k <= m;k += v){
                    if(hh < tt && q[hh] < k - s * v)hh ++;
                    while(hh < tt && g[q[tt - 1]] - (q[tt - 1] - j) / v * w <= g[k] - (k - j) / v * w)tt --;
                    q[tt ++] = k;
                    f[k] = g[q[hh]] + (k - q[hh]) / v * w;
                }
            }
        }
    }
    cout<<f[m];
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值