有 N 种物品和一个容量是 V 的背包。
物品一共有三类:
第一类物品只能用1次(01背包);
第二类物品可以用无限次(完全背包);
第三类物品最多只能用 si 次(多重背包);
每种体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。
si=−1 表示第 i 种物品只能用1次;
si=0 表示第 i 种物品可以用无限次;
si>0 表示第 i 种物品可以使用 si 次;
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
−1≤si≤1000
输入样例
4 5
1 2 -1
2 4 1
3 4 0
4 5 2
输出样例:
8
#include<bits/stdc++.h>
using namespace std;
const int N = 1010;
int f[N],g[N];
int q[N];
int main(){
int n,m;
cin>>n>>m;
int v,w,s;
memset(f,0,sizeof f);
for(int i = 0;i < n;i ++){
cin>>v>>w>>s;
if(s == -1){
for(int j = m;j >= v;j --){
f[j] = max(f[j],f[j - v] + w);
}
}
else if(s == 0){
for(int j = v;j <= m;j ++){
f[j] = max(f[j],f[j - v] + w);
}
}else{
memcpy(g,f,sizeof f);
for(int j = 0;j < v;j ++){
int hh = 0,tt = 0;
for(int k = j;k <= m;k += v){
if(hh < tt && q[hh] < k - s * v)hh ++;
while(hh < tt && g[q[tt - 1]] - (q[tt - 1] - j) / v * w <= g[k] - (k - j) / v * w)tt --;
q[tt ++] = k;
f[k] = g[q[hh]] + (k - q[hh]) / v * w;
}
}
}
}
cout<<f[m];
return 0;
}