acwing-1142. 繁忙的都市

城市C是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造。

城市C的道路是这样分布的:

城市中有 n 个交叉路口,编号是 1∼n,有些交叉路口之间有道路相连,两个交叉路口之间最多有一条道路相连接。

这些道路是 双向 的,且把所有的交叉路口直接或间接的连接起来了。

每条道路都有一个分值,分值越小表示这个道路越繁忙,越需要进行改造。

但是市政府的资金有限,市长希望进行改造的道路越少越好,于是他提出下面的要求:

1.改造的那些道路能够把所有的交叉路口直接或间接的连通起来。

2.在满足要求1的情况下,改造的道路尽量少。

3.在满足要求1、2的情况下,改造的那些道路中分值最大值尽量小。

作为市规划局的你,应当作出最佳的决策,选择那些道路应当被修建。

输入格式
第一行有两个整数 n,m 表示城市有 n 个交叉路口,m 条道路。

接下来 m 行是对每条道路的描述,每行包含三个整数u,v,c 表示交叉路口 u 和 v 之间有道路相连,分值为 c。

输出格式
两个整数 s,max,表示你选出了几条道路,分值最大的那条道路的分值是多少。

数据范围
1≤n≤300,
1≤m≤8000,
1≤c≤10000
输入样例:
4 5
1 2 3
1 4 5
2 4 7
2 3 6
3 4 8
输出样例:
3 6

题解

  1. 二分+最小生成树
#include<bits/stdc++.h>
using namespace std;
const int N = 3e2 + 10;
const int M = 2 * 8e3 + 10;
struct Edge{
    int u,v,w;
    bool operator<(const Edge &a)const {
        return w < a.w;
    }
}edge[M];
int f[N];
int Find(int x){
    return f[x] = (f[x] == x ? f[x] : Find(f[x]));
}

int n,m;
bool check(int x){
    int num = 0;
    for(int i = 1;i <= n;i ++)f[i] = i;
    for(int i = 0;i < m;i ++){
        int a = Find(edge[i].u),b = Find(edge[i].v),w = edge[i].w;
        if(w > x)continue;
        if(a != b){
            num ++;
            f[a] = b;
        }
    }
    return num == n - 1;
}

int main(){
    cin>>n>>m;
    int x,y,w;
    for(int i = 0;i < m;i ++){
        cin>>x>>y>>w;
        edge[i] = {x,y,w};
    }
    sort(edge,edge + m);
    cout<<(n - 1) <<" ";
    int l = 1,r = 8000;
    while(l < r){
        int mid = (l + r) >> 1;
        if(check(mid))r = mid;
        else l = mid + 1;
    }
    cout<<l<<endl;
    return 0;
}
  1. 最小生成树
#include<bits/stdc++.h>
using namespace std;
const int N = 3e2 + 10;
const int M = 2 * 8e3 + 10;
struct Edge{
    int u,v,w;
    bool operator<(const Edge &a)const {
        return w < a.w;
    }
}edge[M];
int f[N];
int Find(int x){
    return f[x] = (f[x] == x ? f[x] : Find(f[x]));
}

int main(){
    int n,m;
    cin>>n>>m;
    int x,y,w;
    for(int i = 0;i < m;i ++){
        cin>>x>>y>>w;
        edge[i] = {x,y,w};
    }
    sort(edge,edge + m);
    for(int i = 1;i <= n;i ++)f[i] = i;
    int res = 0;
    for(int i = 0;i < m;i ++){
        int a = Find(edge[i].u),b = Find(edge[i].v);
        if(a != b){
            res = edge[i].w;
            f[a] = b;
        }
    }
    cout<<(n - 1 ) << " "<<res<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值