城市C是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造。
城市C的道路是这样分布的:
城市中有 n 个交叉路口,编号是 1∼n,有些交叉路口之间有道路相连,两个交叉路口之间最多有一条道路相连接。
这些道路是 双向 的,且把所有的交叉路口直接或间接的连接起来了。
每条道路都有一个分值,分值越小表示这个道路越繁忙,越需要进行改造。
但是市政府的资金有限,市长希望进行改造的道路越少越好,于是他提出下面的要求:
1.改造的那些道路能够把所有的交叉路口直接或间接的连通起来。
2.在满足要求1的情况下,改造的道路尽量少。
3.在满足要求1、2的情况下,改造的那些道路中分值最大值尽量小。
作为市规划局的你,应当作出最佳的决策,选择那些道路应当被修建。
输入格式
第一行有两个整数 n,m 表示城市有 n 个交叉路口,m 条道路。
接下来 m 行是对每条道路的描述,每行包含三个整数u,v,c 表示交叉路口 u 和 v 之间有道路相连,分值为 c。
输出格式
两个整数 s,max,表示你选出了几条道路,分值最大的那条道路的分值是多少。
数据范围
1≤n≤300,
1≤m≤8000,
1≤c≤10000
输入样例:
4 5
1 2 3
1 4 5
2 4 7
2 3 6
3 4 8
输出样例:
3 6
题解
- 二分+最小生成树
#include<bits/stdc++.h>
using namespace std;
const int N = 3e2 + 10;
const int M = 2 * 8e3 + 10;
struct Edge{
int u,v,w;
bool operator<(const Edge &a)const {
return w < a.w;
}
}edge[M];
int f[N];
int Find(int x){
return f[x] = (f[x] == x ? f[x] : Find(f[x]));
}
int n,m;
bool check(int x){
int num = 0;
for(int i = 1;i <= n;i ++)f[i] = i;
for(int i = 0;i < m;i ++){
int a = Find(edge[i].u),b = Find(edge[i].v),w = edge[i].w;
if(w > x)continue;
if(a != b){
num ++;
f[a] = b;
}
}
return num == n - 1;
}
int main(){
cin>>n>>m;
int x,y,w;
for(int i = 0;i < m;i ++){
cin>>x>>y>>w;
edge[i] = {x,y,w};
}
sort(edge,edge + m);
cout<<(n - 1) <<" ";
int l = 1,r = 8000;
while(l < r){
int mid = (l + r) >> 1;
if(check(mid))r = mid;
else l = mid + 1;
}
cout<<l<<endl;
return 0;
}
- 最小生成树
#include<bits/stdc++.h>
using namespace std;
const int N = 3e2 + 10;
const int M = 2 * 8e3 + 10;
struct Edge{
int u,v,w;
bool operator<(const Edge &a)const {
return w < a.w;
}
}edge[M];
int f[N];
int Find(int x){
return f[x] = (f[x] == x ? f[x] : Find(f[x]));
}
int main(){
int n,m;
cin>>n>>m;
int x,y,w;
for(int i = 0;i < m;i ++){
cin>>x>>y>>w;
edge[i] = {x,y,w};
}
sort(edge,edge + m);
for(int i = 1;i <= n;i ++)f[i] = i;
int res = 0;
for(int i = 0;i < m;i ++){
int a = Find(edge[i].u),b = Find(edge[i].v);
if(a != b){
res = edge[i].w;
f[a] = b;
}
}
cout<<(n - 1 ) << " "<<res<<endl;
return 0;
}