python量化策略—— alpha 策略 股票-融资融券对冲(3)

该博客介绍了使用Python进行股票量化策略,特别是Alpha策略结合融资融券进行对冲的方法。策略核心是选取排名前T只股票做多,后T只做空以实现对冲。通过计算等权重收益并与沪深300指数对比,展示在不同市场行情下策略的表现。文章还提及了其他相关量化策略如多因子选股和移动平均策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

将反向操作由1.python量化——alpha股票-指数期货对冲策略的股指期货,换成筛选的后T只股票的做空(融资融券业务)。
大概思路就是选择排名前T只股票做多,后T只做空。

  1. 所用库
# coding=utf-8
import math
import tushare as ts
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import talib
matplotlib.rcParams['axes.unicode_minus']=False
plt.rcParams['font.sans-serif']=['SimHei']
  1. 数据获取
ts.set_token('f3e00ef    token 码01c6811477')
pro = ts.pro_api()
df1= pro.query('daily_basic', ts_code='', trade_date='20200420',fields='ts_code,trade_date,total_mv,ps,pe,pb')#获取日期所有数据
df1_=df1#赋值一个  用于计算最后T名股票
  1. 股票筛选函数
#################################筛选股票函数######################################
def XG_function(df1,sig):     #sig=True是筛选前T只股票的参数,sig=False则是后T只
#条件选股,排名前20
    df1=df1[   df1['pe']>45   ] 
    df1=df1[   df1['pb']>8     ] 
    df1=df1[   df1['ps']>17   ] 
    df1=df1[   df1['total_mv']<5000000   ]
    #排序选股
    df1=df1.sort_values(by="pe" , ascending=sig)
    df1=df1.head(100)#按由低到高排,选前100名
    df1=df1.sort_values(by="ps" , ascending=sig)
    df1=df1.head(70)
    df1=df1.sort_values(by="pb" , ascending=sig)
    df1=df1.head(20)
    df1=df1['ts_code']#获得一篮子股票
    return df1
  1. 计算前T 后T只股票的等权重收益
code='000300.SH'
star='20200430'
end="20200810"
###################计算组合的等权重收益率##########################################
def Sy_function(df
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小李、不姓李

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值