月月查华华的手机

本文介绍了一种使用序列自动机的方法来判断给定字符串t是否是另一字符串s的子序列。通过构建字符串s的后缀树,可以在O(n)时间内查询子序列是否存在。博客详细讲解了构建树的过程和如何利用该数据结构进行快速查询。
摘要由CSDN通过智能技术生成

月月查华华的手机
在这里插入图片描述
输入

noiauwfaurainairtqltqlmomomo
8
rain
air
tql
ntt
xiaobai
oiiiooo
orzcnzcnznb
ooooo

输出

Yes
Yes
Yes
Yes
No
Yes
No
No

在这里插入图片描述
思路:

序列自动机看看这篇博客关于序列自动机

AC代码

#include<bits/stdc++.h>
using namespace std;
const int N=1e6+7;
string s,t;
int ne[N][30];
int tree[30];//在字符串最前面出现的位置
void build()//建树
{ memset(tree,-1,sizeof(tree));//初始化未出现的字符
	//处理每一个字符
    for(int i=s.length();i>=0;i--)
    {
//找出第i个字符后面的26个字母最早出现的字符的位置
    for(int j=0;j<26;j++)
    ne[i][j]=tree[j];
 //用当前字符更新当前字符在原串中从后向前最晚出现的位置
        tree[s[i]-'a']=i;
    }
}
bool check()//查询子序列
{
    int start=tree[t[0]-'a'];//start为t第一个字符位置
    if(start==-1)
    return false;//第一个字符不在s中
    for(int i=1;i<t.length();i++)
    {
    start=ne[start][t[i]-'a'];//位置移动的下一个字符的位置
       if(start==-1)
       return false;
    }
    return true;
}
int main()
{
    int n;
   getline(cin,s);
    build();
    cin>>n;
    while(n--)
    {
        cin>>t;
        if(check())
            cout<<"Yes"<<endl;
        else
            cout<<"No"<<endl;
    }return 0;
}
好的,这是一个比较简单的数学题,可以用矩阵快速幂求解。以下是 C++ 代码实现: ```c++ #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long LL; const int MAXN = 2; const int MOD = 1e9 + 7; struct Matrix { LL m[MAXN][MAXN]; Matrix() { memset(m, 0, sizeof(m)); } Matrix operator * (const Matrix& b) const { Matrix c; for (int i = 0; i < MAXN; ++i) { for (int j = 0; j < MAXN; ++j) { for (int k = 0; k < MAXN; ++k) { c.m[i][j] = (c.m[i][j] + m[i][k] * b.m[k][j]) % MOD; } } } return c; } } base, res; Matrix qpow(Matrix a, int b) { Matrix ans; for (int i = 0; i < MAXN; ++i) { ans.m[i][i] = 1; } while (b) { if (b & 1) { ans = ans * a; } a = a * a; b >>= 1; } return ans; } LL gcd(LL a, LL b) { return b == 0 ? a : gcd(b, a % b); } int main() { LL a, b, n; cin >> a >> b >> n; if (n == 1) { cout << a << endl; } else if (n == 2) { cout << b << endl; } else { base.m[0][0] = base.m[0][1] = base.m[1][0] = 1; res = qpow(base, n - 2); LL ans = gcd(a * res.m[0][0] % MOD + b * res.m[1][0] % MOD, b * res.m[1][0] % MOD + b * res.m[1][1] % MOD); cout << ans << endl; } return 0; } ``` 在这段代码中,我们定义了一个 `Matrix` 结构体,它表示一个 $2\times2$ 的矩阵。其中重载了 `*` 运算符,实现了矩阵乘法。 然后,我们定义了一个矩阵快速幂函数 `qpow`,用于求解矩阵的 $n$ 次方。 最后,在 `main` 函数中,我们通过快速幂求出矩阵 $base$ 的 $n-2$ 次方,然后根据题目要求求出 $\gcd(F_N, F_{N+1})$ 并输出即可。 需要注意的是,当 $n=1$ 或 $n=2$ 时,直接输出 $a$ 或 $b$ 即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

稚皓君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值