蓝桥杯 最短路

问题描述 给定一个n个顶点,m条边的有向图(其中某些边权可能为负,但保证没有负环)。请你计算从1号点到其他点的最短路(顶点从1到n编号)。

输入格式 第一行两个整数n, m。

接下来的m行,每行有三个整数u, v, l,表示u到v有一条长度为l的边。

输出格式 共n-1行,第i行表示1号点到i+1号点的最短路。
样例输入 3 3
1 2 -1
2 3 -1
3 1 2
样例输出
-1
-2

这道题我使用的是Bellman Ford 算法,该算法的特点是能判断负环,题目保证没有负环,因此用dijkstra等其它最短路算法也行,这里对Bellman Ford的算法解释不详细,读者可自行去了解

代码如下:

#include <stdio.h>

#define INF 999999

struct e
{
	int u, v;
	int weight;
} edge[200005];	//储存图的所有边

int dis[200005];//储存到所有点的最短距离

int Bellman_Ford(int n, int m)
{
	int i, j;
	int flag = 1;

	for (i = 1; i <= n; i++)
		dis[i] = INF;//默认所有点的最短距离为无穷大

	dis[1] = 0;//令第一点到第一点的距离为0

	for (i = 0; i < n - 1; i++)//至多遍历n-1才能求出最短路径,n为定点数
	{
		flag = 1;
		for (j = 0; j < m; j++)//遍历所有的边,m为边数
			if (dis[edge[j].u] + edge[j].weight < dis[edge[j].v])//如果从u到v经过第j条边比原来经过的边短就从第j条边过
			{
				flag = 0;//这里表示如果遍历所有的边后有至少一次更新就令flag=0,说明还没求完最短路径
				dis[edge[j].v] = dis[edge[j].u] + edge[j].weight;//更新最短路径
			}
		if (flag)//如果flag==1说明虽然还没有遍历n-1次,但已经提前选完了最短路径,可以退出了,起到优化时间的效果
			break;
	}
				
	for (i = 2; i <= n; i++)//把第一点到其它所有点最短路的距离输出
		printf("%d\n", dis[i]);

	return 1;
}

int main()
{
	int n, m;
	int i;

	scanf("%d%d", &n, &m);

	for (i = 0; i < m; i++)
		scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].weight);

	Bellman_Ford(n, m);

	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值