PCA公式推导

PCA公式推导

PCA目的与原理

PCA可以实现在维度较多的时候的降维的功能,并且能在降维的过程中最大的保留原来的变量的所有信息。实现的思路是,对于现存的m维数据,找到k(k<m)维数据来对其进行代替,目标是尽可能减少信息的损失。为了更加直观的认识,我们以二维的数据为例。如下图,存在蓝色的一些数据点,我们希望找到一个比二维维度更低(这里就是这条一维的直线),并且可以用这个维度得到评价指标的相应的值。举例来说,PCA的目的就是,对于一个点,如图中的x1
在这里插入图片描述

找到一个方向为u的直线,使得x1 到直线的距离 d1尽可能的小,并且可以用d2 来表示x1 的信息。当维度增加的时候,我们不能直观的获取这个 d1,而我们发现这样的直线可以满足在投影之后,样本点的分布尽量的分散,并且在数学中常用方差来衡量样本之间的距离。因此在求解的时候,使用变化后让每个特征内部方差最大化的思想来进行求解。
另外,在实际使用PCA的时候需要注意,要对数据进行标准化,如果维度之间的量纲差异过大,需要对数据进行归一化,这样有利于提升计算的效率。

PCA使用说明

在实际使用PCA的时候,只要这样几个步骤就可以了。
1)先按照数据的特点,对数据进行标准化和归一化的处理。根据数据点计算协方差矩阵。
2)求出协方差矩阵的特征值以及对应的特征向量
3)将特征向量按照对应的特征值大小从上到下按行排列成矩阵,取前k行形成矩阵P
4)Y = PX即为降维到k维后的数据
那么为什么可以这样做呢?我们可以看第三个部分PCA的公式推导来进行理解。

PCA公式推导

在这里插入图片描述

  • 3
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Kernel PCA(核主成分分析)是一种非线性的主成分分析方法,它通过将数据映射到高维空间,利用线性PCA方法对映射后的数据进行处理,得到非线性的主成分分析结果。 下面是Kernel PCA推导过程: 假设我们有一个包含n个样本的数据集$X=\{x_1,x_2,...,x_n\}$,每个样本$x_i$有d个特征。我们的目标是将数据集X映射到一个m维的特征空间,其中m<d。 首先,我们定义一个核函数$K(x_i,x_j)$,它可以将两个样本映射到高维空间中的内积。常用的核函数有线性核函数、多项式核函数、高斯核函数等。 然后,我们定义一个中心化矩阵K,其中$K_{ij}=K(x_i,x_j)-\frac{1}{n}\sum_{k=1}^nK(x_i,x_k)-\frac{1}{n}\sum_{k=1}^nK(x_j,x_k)+\frac{1}{n^2}\sum_{k=1}^n\sum_{l=1}^nK(x_k,x_l)$。这个矩阵可以看作是样本之间的相似度矩阵,同时也是一个半正定矩阵。 接着,我们对中心化矩阵K进行特征值分解,得到特征值$\lambda_1,\lambda_2,...,\lambda_n$和对应的特征向量$\phi_1,\phi_2,...,\phi_n$。其中,特征向量$\phi_i$是映射到高维空间中的第i个主成分。 最后,我们将原始数据集X映射到m维的特征空间中,得到新的数据集$X'=\{\phi_1(x_1),\phi_2(x_2),...,\phi_m(x_n)\}$。这个数据集就是经过非线性主成分分析处理后得到的结果。 总的来说,Kernel PCA推导过程就是先定义核函数,然后通过中心化矩阵和特征值分解得到映射到高维空间中的主成分,最后将原始数据集映射到新的特征空间中得到结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值