【CNN】卷积神经网络 :适用范围、本质、详细计算过程、输入输出数据形状、池化、流程设计(无代码)

本文深入探讨卷积神经网络(CNN),解释其工作原理、本质和适用范围,包括卷积核的概念、多通道输入的处理、计算过程中的数据形状变化以及池化的操作。CNN主要应用于图像特征提取,通过卷积和池化操作来减少数据维度并提取关键特征。
摘要由CSDN通过智能技术生成

卷积神经网络

图片直观理解

在这里插入图片描述
卷积神经网络叫做此名字的主要原因是因为其中存在卷积核的结构和卷积的运算。卷积的运算的具体的方式就是,按照一定的规律,完成小矩阵和大矩阵的乘积,输出一个新的矩阵。
在这里插入图片描述
具体的计算方式,就是按照图中的框框的地方,对应的位置相乘,再把整个矩阵的之加起来。计算完整个矩阵的时候,就得到卷积之后的值了。本质只是一种运算。

实现思想,本质以及适用问题

1)卷积神经网络是一种通过计算,提取到特征,对于特征进行计算的结构
本质是通过矩阵将数据有一定结构的进行计算,而不是把数据看为是一个一维的(虽然计算的本质还是一维的,但是因为矩阵的结构,导致选取的数据和纯一维计算的时候是不同的)
2)这里的特征在计算机里面以数的形式存在,可以认为比较大的数字反应了一种特征。因为选择数据的时候,是选择有结构的数据,因此可以提取到特征(例如图像,每个局部都是一个特征,我就对每一个局部进行计算,再拉成一维的计算。如果直接全部拉成一维的信息很少,效率不高)
3)一般适用于在相邻空间位置上有一定关系的数据,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值