卷积神经网络
图片直观理解
卷积神经网络叫做此名字的主要原因是因为其中存在卷积核的结构和卷积的运算。卷积的运算的具体的方式就是,按照一定的规律,完成小矩阵和大矩阵的乘积,输出一个新的矩阵。
具体的计算方式,就是按照图中的框框的地方,对应的位置相乘,再把整个矩阵的之加起来。计算完整个矩阵的时候,就得到卷积之后的值了。本质只是一种运算。
实现思想,本质以及适用问题
1)卷积神经网络是一种通过计算,提取到特征,对于特征进行计算的结构
本质是通过矩阵将数据有一定结构的进行计算,而不是把数据看为是一个一维的(虽然计算的本质还是一维的,但是因为矩阵的结构,导致选取的数据和纯一维计算的时候是不同的)
2)这里的特征在计算机里面以数的形式存在,可以认为比较大的数字反应了一种特征。因为选择数据的时候,是选择有结构的数据,因此可以提取到特征(例如图像,每个局部都是一个特征,我就对每一个局部进行计算,再拉成一维的计算。如果直接全部拉成一维的信息很少,效率不高)
3)一般适用于在相邻空间位置上有一定关系的数据,