%导入原始数据
c = 0;
flag = 0;
fore_num = 5;%(年)
hyq = 1;
flag_1 = 1;
y = zeros(154+2 , 60+fore_num*12);
y( 1 , 1 ) = 2008;
y( 1 , 1+12 ) = 2009;
y( 1 , 1+12+12 ) = 2010;
y( 1 , 1+12+12+12 ) = 2011;
y( 1 , 1+12+12+12+12 ) = 2012;
for list_1 = 1 : 12
y( 2,list_1 ) = list_1;
end
for list_2 = 1+12 : 12+12
y( 2,list_2 ) = list_2-12;
end
for list_3 = 1+12+12 : 12+12+12
y( 2,list_3 ) = list_3-12-12;
end
for list_4 = 1+12+12+12 : 12+12+12+12
y( 2,list_4 ) = list_4-12-12-12;
end
for list_5 = 1+12+12+12+12 : 12+12+12+12+12
y( 2,list_5 ) = list_5-12-12-12-12;
end
ori_matrix = xlsread('各城镇月度需求原始数据' , 1 ,' B3 : BI156 ' );
for h = 1 : 154
x0 = ori_matrix(h , :);
b = x0(1,1);
length_x0 = length(x0);
%Ratio为检验系数,即数列的级比
%x0 = x0 + 40;
Ratio = zeros(1 , length_x0 - 1);
for i = 1 : length_x0 - 1
Ratio(i) = x0(i) / x0(i+1);
end
x1 = ones(1 , length_x0);
%对数据的级比做判断
if ( exp(-2 / (length_x0 + 1)) < min(Ratio) && max(Ratio) < exp(2 / (length_x0 + 1)) )
%0.8338—1.1994
%对x0数组进行维数累加求和,得到x1
x1 = cumsum(x0);
%生成均值序列 alpha自取
alpha = 0.5;%input('please enter alpha number: ');
z1 = zeros(1 , length_x0 - 1);
for k = 2 : length_x0
z1(k-1) = alpha * x1(k) + (1-alpha) * x1(k-1);
end
%解方程得到最小二乘法的解为 a_b
y0 = x0( 2 : 1 : length_x0 );%()中没有,说明只有行没有列
B = [-z1 ; ones( 1 , length_x0 - 1 )];
%gj为a和b的数据
a_b = ( inv(B * B') ) * B * y0';
n = fore_num*12;%input('预测的数据个数为:');
for k = 1 : length_x0 + n - 1
x1(k+1) = ( (x0(1) - (a_b(2) / a_b(1)) ) * ( exp(-k * a_b(1)) ) ) + a_b(2) / a_b(1);
end
x0(1) = x1(1);
for k = 2 : length_x0 + n
x0(k) = x1(k) - x1(k-1);
end
else
disp('数据不满足检验,将对数据进行处理')
while(1)
x0 = x0 + 1;
Ratio = zeros(1 , length_x0 - 1);
for i = 1 : length_x0 - 1
Ratio(i) = x0(i) / x0(i+1);
end
if( exp(-2 / (length_x0+1)) < min(Ratio) && max(Ratio) < exp(2 / (length_x0+1)) )
break;
end
end
c = x0(1,1) - b;
fprintf( '数据进行处理完成,c的值为%d\n' , c );
flag = 1;
end
if(flag == 1)
length_x0 = length(x0);
%Ratio为检验系数,即数列的级比
%x0 = x0 + 40;
Ratio = zeros(1 , length_x0 - 1);
for i = 1:length_x0 - 1
Ratio(i) = x0(i) / x0(i+1);
end
x1 = ones(1 , length_x0);
%对数据的级比做判断
if ( exp(-2 / (length_x0+1)) < min(Ratio) && max(Ratio) < exp(2 / (length_x0+1)) )
%0.8338—1.1994
%对x0数组进行维数累加求和,得到x1
x1 = cumsum(x0);
%生成均值序列 alpha自取
alpha = 0.5;%input('please enter alpha number: ');
z1 = zeros(1 , length_x0 - 1);
for k = 2 : length_x0
z1(k-1) = alpha * x1(k) + (1-alpha) * x1(k-1);
end
%解方程得到最小二乘法的解为 a_b
y0 = x0( 2 : 1 : length_x0 );%()中没有,说明只有行没有列
B = [-z1 ; ones( 1 , length_x0-1 )];
%gj为a和b的数据
a_b = ( inv(B * B') ) * B * y0';
n = fore_num * 12;%input('预测的数据个数为:');
for k = 1 : length_x0 + n - 1
x1(k+1) = ( (x0(1) - (a_b(2) / a_b(1)) ) * ( exp(-k * a_b(1)) ) ) + a_b(2) / a_b(1);
end
x0(1) = x1(1);
for k = 2 : length_x0 + n
x0(k) = x1(k) - x1(k-1);
end
end
end
x0 = x0 -c ;
if(flag_1 ==1)
for q = 1:fore_num
y( 1 , 1+12+12+12+12+12*q ) = 2012+q;
end
for o = 1 : (fore_num*12)
y( 2 , 12+12+12+12+12+o ) = hyq;
hyq = hyq + 1;
if(hyq == 13)
hyq = 1;
end
end
flag_1 = 0;
end
y( h+2 , : ) = x0;
fprintf( '写入第%d行\n' , h );
end
%plot(x0,'*')
xlswrite( '预测完成数据_级比_总' , y , 1)
灰色预测GM(1,1)连续导入百组数据,进行级比分析计算C的具体值并输出——完整代码(自动输出)
最新推荐文章于 2023-01-23 22:04:31 发布