2020-04-22

图 5 稀疏矩阵示意图![在这里插入图片描述]在这里插入图片描述
如图 5 所示,如果矩阵中分布有大量的元素 0,即非 0 元素非常少,这类矩阵称为稀疏矩阵。压缩存储稀疏矩阵的方法是:只存储矩阵中的非 0 元素,与前面的存储方法不同,稀疏矩阵非 0 元素的存储需同时存储该元素所在矩阵中的行标和列标。例如,存储图 5 中的稀疏矩阵,需存储以下信息:(1,1,1):数据元素为 1,在矩阵中的位置为 (1,1);(3,3,1):数据元素为 3,在矩阵中的位置为 (3,1);(5,2,3):数据元素为 5,在矩阵中的位置为 (2,3);除此之外,还要存储矩阵的行数 3 和列数 3;由此,可以成功存储一个稀疏矩阵。

例子
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大数据小理

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值