Grid-00100

Grid-00100


来源:CodeForces - 1371D


题目描述:

A mad scientist Dr.Jubal has made a competitive programming task. Try to solve it!

You are given integers n,k. Construct a grid A with size n×n consisting of integers 0 and 1. The very important condition should be satisfied: the sum of all elements in the grid is exactly k. In other words, the number of 1 in the grid is equal to k.

Let’s define:

Ai,j as the integer in the i-th row and the j-th column.
Ri=Ai,1+Ai,2+…+Ai,n (for all 1≤i≤n).
Cj=A1,j+A2,j+…+An,j (for all 1≤j≤n).
In other words, Ri are row sums and Cj are column sums of the grid A.
For the grid A let’s define the value f(A)=(max®−min®)2+(max©−min©)2 (here for an integer sequence X we define max(X) as the maximum value in X and min(X) as the minimum value in X).
Find any grid A, which satisfies the following condition. Among such grids find any, for which the value f(A) is the minimum possible. Among such tables, you can find any.


输入格式:

The input consists of multiple test cases. The first line contains a single integer t (1≤t≤100) — the number of test cases. Next t lines contain descriptions of test cases.

For each test case the only line contains two integers n, k (1≤n≤300,0≤k≤n2).

It is guaranteed that the sum of n2 for all test cases does not exceed 105.


输出格式:

For each test case, firstly print the minimum possible value of f(A) among all tables, for which the condition is satisfied.

After that, print n lines contain n characters each. The j-th character in the i-th line should be equal to Ai,j.

If there are multiple answers you can print any.


输入样例:

4
2 2
3 8
1 0
4 16

输出样例:

0
10
01
2
111
111
101
0
0
0
1111
1111
1111
1111

思路:

题目要求f(A)最小,则方阵中1的数量必须尽量平均分配,保证每行中1的数量的差值尽量小,每列中1的数量的差值尽量小。则f(A)的最小值要么为0(可以均分),要么为2(不可以均分,此时max( R ) - min( R ) = 1, max( C ) - min( C ) = 1)。

当k是n的倍数时,可以均分;否则,不可以均分。

要实现尽量平均分配1的数量,则首先沿对角线分配1的数量,当沿对角线分配完之后,再每一行每一列地分,即保证每次分配的1不同行不同列。


AC代码:

#include <bits/stdc++.h>

using namespace std;

typedef long long LL;
typedef unsigned long long ULL;

const int INF = 0x3f3f3f3f;

void init ()
{
    // freopen("input.txt", "r", stdin);
    // freopen("output.txt", "w", stdout);
    ios::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
}

int main ()
{

    init();

    int T;
    cin >> T;
    while (T--)
    {
        int n, k;
        cin >> n >> k;
        if (k % n) cout << 2 << endl;
        else cout << 0 << endl;
        int a[n][n];
        memset(a, 0, sizeof(a));
        for (int i = 0; i < k % n; i++)
            for (int j = i; j <= i + k / n; j++)
                a[i][j % n] = 1;
        for (int i = k % n; i < n; i++)
            for (int j = i; j < i + k / n; j++)
                a[i][j % n] = 1;
        for (int i = 0; i < n; i++)
        {
            for (int j = 0; j < n; j++)
                cout << a[i][j];
            cout << endl;
        }
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值