数组结构与算法-036-042 前中后缀表达式-逆波兰计算器

036 前缀 中缀 后缀(逆波兰表达式)表达式

前缀表达式

前缀表达式(波兰表达式)

  1. 前缀表达式又称波兰表达式,前缀表达式的运算符位于操作数之前
  2. 举例说明:(3 + 4) * 5 -6 对应的前缀表达式就是 - * + 3 4 5 6

前缀表达式课计算机求值

从右至左扫描表达式,遇到数字时,将数字压入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(栈顶元素 和 次顶元素),并将结果入栈;重复上述过程直到表达式的最左端,最后运算出的值即为表达式的结果

例如:(3 + 4) * 5 -6 应的前缀表达式就是 - * + 3 4 5 6
步骤如下:

  1. 从右至左扫描,将 6、5、4、3压入堆栈
  2. 遇到 + 运算符,因此 弹出3和4(3为栈顶元素,4为次顶元素),计算出 3+4 的值,得7,再将7入栈
  3. 接下来是 * 运算符,因此弹出 7 和 5,计算出 7 * 5 = 35 ,将35入栈
  4. 最后是 - 运算符,计算出 35 - 6 的值,即 29,由此得出最终的结果

中缀表达式

  1. 中经表达式就是最常见的运算表达式,如:(3 + 4) * 5 -6
  2. 中缀表达式的求值是我们人最熟悉的,但是对计算机来说却不好操作(前面我们讲的案例就能看到这个问题),因此,在计算结果时,往往会将中缀表达式转成其它表达式来操作(一般转成后缀表达式)

后缀表达式

  1. 后缀表达式又称逆波兰表达式与前缀表达式相似,只是运算符位于操作数之后
  2. 举例说明: (3 + 4) * 5 -6 对应的后缀表达式就是:3 4 + 5 * 6 -
正常的表达式逆波兰表达式
a + ba b +
a + (b - c)a b c - +
a + (b - c) * da b c - d * +
a + d * (b - c)a d b c - * +
a = 1 + 3a 1 3 + =

正常表达式转为后缀表达式的规律:(盲猜)
数字从左向右提取,符号从右向左取;但是先取优先级高的,再取优先级低的。(还是有些不对)

后缀表达式的计算机求值过程

从左至右扫描表达式,遇到数字时,将数字夺入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(次顶元素 和栈顶元素),并将结果入栈;重复上述过程直到表达式的最右端,最后运算得出的值即为表达式的结果

例如:(3 + 4) * 5 - 6 对应的前缀表达式就是 3 4 + 5 * 6 ,针对后缀表达式求值步骤如下:

  1. 从左至右扫描,将 3 和 4 压入堆栈
  2. 遇到 + 运算符,因此弹出 4 和 3 (4 为栈顶元素, 3 为次顶元素),计算出 3 + 4 的值,得7,再将 7 入栈
  3. 将 5 入栈
  4. 接下来是 * 运算符,因此弹出 5 和 7 ,计算出 7 * 5 = 35 ,将 35 入栈
  5. 将 6 入栈
  6. 最后是 - 运算符,计算出 35 - 6 的值,即 29 ,由此得出最终结果

037-038 逆波兰计算器分析和实现

完成一个逆波兰计算器,

  1. 输入一个逆波兰表达式,使用栈(stack),计算其结果
  2. 支持小括号和多位整数,因为主讲数据结构,因此简化, 只支持整数的计算
package com.old.stack_036_042;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Stack;

public class PolandNotation {
    public static void main(String[] args) {
        /*先定义一个逆波兰表达式
         (3 + 4) * 5 - 6 => 3 4 + 5 x 6 -
         说明:为了方便,逆波兰表达式的数字和符号使用空格隔开
        */
        String suffixExpression = "30 4 + 5 * 6 -";

        /**
         * 思路:
         * 1. 先将  "3 4 + 5 x 6 -" 放到 ArrayList 中
         * 2. 将 ArrayList 传递给一个方法,遍历 ArrayList 配合栈完成计算
         * 将他放入list中的好处是方便取,不然还需要使用 index 取太累了
         */
        List<String> list = getList(suffixExpression);
        // [3, 4, +, 5, x, 6, -]
        System.out.println(list.toString());
        //计算对逆波兰表达式的运算
        int res = calculate(list);
        System.out.println("结果:" + res);
    }

    /*
        1. 从左至右扫描,将 3 和 4 压入堆栈
        2. 遇到 + 运算符,因此弹出 4 和 3 (4 为栈顶元素, 3 为次顶元素),计算出 3 + 4 的值,得7,再将 7 入栈
        3. 将 5 入栈
        4. 接下来是 \* 运算符,因此弹出 5 和 7 ,计算出 7 \* 5 = 35 ,将 35 入栈
        5. 将 6 入栈
        6. 最后是 - 运算符,计算出 35 - 6 的值,即 29 ,由此得出最终结果
        */
    public static int calculate(List<String> ls){
        //创建栈,只需要一个栈即可
        Stack<String> stack = new Stack<>();
        //遍历 ls
        for (String item : ls) {
            //这里使用正则表达式取出数
            //匹配的是多位数
            if (item.matches("\\d+")) {
                //如果是数,直接入栈
                stack.push(item);
            }else {
                int num2 = Integer.valueOf(stack.pop());
                int num1 = Integer.valueOf(stack.pop());
                int res = 0;
                if (item.equals("+")){
                    res = num1 + num2;
                }else if (item.equals("-")){
                    // - 和 除的顺序有要求
                    res = num1 - num2;
                }else if (item.equals("*")){
                    // - 和 除的顺序有要求
                    res = num1 * num2;
                }else if (item.equals("/")){
                    // - 和 除的顺序有要求
                    res = num1 / num2;
                }else {
                    throw new RuntimeException("运算符有误");
                }
                stack.push(res + "");
            }
        }
        //最后留在 stack 中的数据就是运算结果
        return Integer.valueOf(stack.pop());
    }

    /**
     * 将一个逆波兰表达式,依次将数据和运算符,放入到 ArrayList中
     */
    public static List<String> getList(String suffixExpression){
        return new ArrayList<>(Arrays.asList(suffixExpression.split(" ")));
    }
}

039-042 中缀表达式转后缀表达式

039 思路解析

这里是将表达式进行转换,而不是计算结果
(个人看法:不管是前缀、中缀、后缀,哪种表达式,他的规律或者说的他其实就是中缀表达式按照要求入栈的顺序)前缀:从右至左扫描表达式。后缀:从左至右扫描
中缀表达式转换炎后缀表达式
后缀表达式适合计算机进行运算,但是人却不太容易写出来,尤其是表达式很长的情况下
具体步骤:

  1. 初始化两个栈:运算符栈 s1 和 储存中间结果的栈 s2
  2. 从左至右扫描中缀表达式;
  3. 遇到操作数时,将其压 s2
  4. 遇到运算符时,比较其与 s1 栈顶运算符的优先级:
    1. 如果 s1 为空,或栈顶运算符为 左括号“(” ,则直接将运算符入栈
    2. 否则,若优先级比栈顶运算符的高,也将运算符压入 s1
    3. 否则,将 s1 栈顶的运算符弹出并压入 s2 中,再次转到 4-1操作 与 s1 中新的栈顶运算符相比较

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

040 代码实现1

package com.old.stack_036_042;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Stack;

public class PolandNotation {
    public static void main(String[] args) {

        /**
         * 将中缀表达式转为后缀表达式的结果
         * 1. 1 + ((2 + 3) * 4) - 5 => 1 2 3 4 * + 5
         * 2. 因为直接对一个字符串进行操作,不太方便,因此,先将 “1 + ((2 + 3) * 4) - 5” 中经表达式转为对应的list
         *  即,将 “1 + ((2 + 3) * 4) - 5” =》 ArrayList 【1,+,(】
         */
        String expression = "1 + ((2 + 3) * 4) - 5";
        List<String> infixExpressionList = toInfixExpressionList(expression);
        System.out.println(infixExpressionList);


        /*先定义一个逆波兰表达式
         (3 + 4) * 5 - 6 => 3 4 + 5 x 6 -
         说明:为了方便,逆波兰表达式的数字和符号使用空格隔开
        */
        String suffixExpression = "30 4 + 5 * 6 -";

        /**
         * 思路:
         * 1. 先将  "3 4 + 5 x 6 -" 放到 ArrayList 中
         * 2. 将 ArrayList 传递给一个方法,遍历 ArrayList 配合栈完成计算
         * 将他放入list中的好处是方便取,不然还需要使用 index 取太累了
         */
        List<String> list = getList(suffixExpression);
        // [3, 4, +, 5, x, 6, -]
        System.out.println(list.toString());
        //计算对逆波兰表达式的运算
        int res = calculate(list);
        System.out.println("结果:" + res);
    }

    /**
     * 40P 新增代码
     * 将 中缀表达式转成对应的List
     * @param s
     * @return
     */
    public static List<String> toInfixExpressionList(String s){
        s = s.trim();
        List<String> ls = new ArrayList<>(s.length());
        //这是指针,用于遍历中缀表达式字符串
        int i = 0;
        //对多位数的拼接
        String str;
        //每遍历一个字符,就放入 c
        char c;
        do {
            if (" ".equals(s.substring(i, i + 1))){
                i++;
                continue;
            }
            //如果 c 是一个非数字,就放入到 c
            if ((c = s.charAt(i)) < 48 || (c = s.charAt(i)) > 57){
                ls.add(c + "");
                i++;
            }else {
                //如果是一个数,需要考虑多位数的问题
                //先将 str 置为空字符串
                str = "";
                while (i < s.length() && (c = s.charAt(i)) >= 48 && (c = s.charAt(i)) <= 57){
                    str += c;
                    i++;
                }
                ls.add(str);

            }
        }while (i < s.length());
        return ls;
    }

    /*
        1. 从左至右扫描,将 3 和 4 压入堆栈
        2. 遇到 + 运算符,因此弹出 4 和 3 (4 为栈顶元素, 3 为次顶元素),计算出 3 + 4 的值,得7,再将 7 入栈
        3. 将 5 入栈
        4. 接下来是 \* 运算符,因此弹出 5 和 7 ,计算出 7 \* 5 = 35 ,将 35 入栈
        5. 将 6 入栈
        6. 最后是 - 运算符,计算出 35 - 6 的值,即 29 ,由此得出最终结果
        */
    public static int calculate(List<String> ls){
        //创建栈,只需要一个栈即可
        Stack<String> stack = new Stack<>();
        //遍历 ls
        for (String item : ls) {
            //这里使用正则表达式取出数
            //匹配的是多位数
            if (item.matches("\\d+")) {
                //如果是数,直接入栈
                stack.push(item);
            }else {
                int num2 = Integer.valueOf(stack.pop());
                int num1 = Integer.valueOf(stack.pop());
                int res = 0;
                if (item.equals("+")){
                    res = num1 + num2;
                }else if (item.equals("-")){
                    // - 和 除的顺序有要求
                    res = num1 - num2;
                }else if (item.equals("*")){
                    // - 和 除的顺序有要求
                    res = num1 * num2;
                }else if (item.equals("/")){
                    // - 和 除的顺序有要求
                    res = num1 / num2;
                }else {
                    throw new RuntimeException("运算符有误");
                }
                stack.push(res + "");
            }
        }
        //最后留在 stack 中的数据就是运算结果
        return Integer.valueOf(stack.pop());
    }

    /**
     * 将一个逆波兰表达式,依次将数据和运算符,放入到 ArrayList中
     */
    public static List<String> getList(String suffixExpression){
        return new ArrayList<>(Arrays.asList(suffixExpression.split(" ")));
    }
}

041

package com.old.stack_036_042;

import com.sun.org.apache.regexp.internal.RE;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Stack;

public class PolandNotation {
    public static void main(String[] args) {

        /**
         * 将中缀表达式转为后缀表达式的结果
         * 1. 1 + ((2 + 3) * 4) - 5 => 1 2 3 4 * + 5
         * 2. 因为直接对一个字符串进行操作,不太方便,因此,先将 “1 + ((2 + 3) * 4) - 5” 中经表达式转为对应的list
         *  即,将 “1 + ((2 + 3) * 4) - 5” =》 ArrayList 【1,+,(】
         * 3. 将得到的中缀表达式对应的 list =》 后缀表达式对应的 list
         * 1 2 3 4 * + 5
         */
        String expression = "1 + ((2 + 3) * 4) - 5";
        List<String> infixExpressionList = toInfixExpressionList(expression);
        System.out.println(infixExpressionList);
        List<String> suffixExpressionList = parseSuffixExpressionList(infixExpressionList);
        System.out.println(suffixExpressionList);

        //计算对逆波兰表达式的运算
        int res = calculate(suffixExpressionList);
        System.out.println("结果:" + res);
    }

    /**
     * 将得到的中缀表达式对应的 list =》 后缀表达式对应的 list
     *
     * @param ls
     * @return
     */
    public static List<String> parseSuffixExpressionList(List<String> ls) {
        //定义两个栈,初始化栈
        //符号栈
        Stack<String> s1 = new Stack<>();
        /**
         * 存储中间结果的线
         * 说明:因为 s2 这个栈,在整个转换过程中,没有 pop 操作,而且后面还需要
         * 逆序输出。比较麻烦,所以这里使用 数组,不使用栈
         *         Stack<String> s2 = new Stack<>();
         */
        //储存中间结果
        List<String> s2 = new ArrayList<>();

        for (String item : ls) {
            //如果是一个数,入栈 s2
            if (item.matches("\\d+")){
                s2.add(item);
            }else if (item.equals("(")){
                s1.push(item);
            }else if (item.equals(")")){
                /*
                如果是右括号“)”,则依次弹出 s1 栈顶的运算符,并压入 s2,
                直到遇到左括号为止,此时将这一对括号丢弃
                */
                while (!s1.peek().equals("(")){
                    s2.add(s1.pop());
                }
                //将 “(” 弹出栈
                s1.pop();
                /*
                这个循环会将
                for (String s : s1) {
                    if (s.equals("(")){
                        break;
                    }
                    s2.add(s);
                }*/
            }else {
                /*
                 当 item 的优先级 小于等于 栈顶的运算符 ,将 s1 栈顶的运算符弹出并加入
                 到 s2 中,再次转到 (4.1步骤)与 s1 中新的栈顶运算符相比较

                 缺少一个比较优先级高低的方法
                */
                while (s1.size() != 0 && Operation.getValue(s1.peek()) >= Operation.getValue(item)){
                    s2.add(s1.pop());
                }
                //还需要将 item 压入栈中
                s1.push(item);
            }

        }
        //将 s1 中剩余的运算符依次弹出 并加入 s2
        while (s1.size() != 0){
            s2.add(s1.pop());
        }

        //注意:因为是存入到 List 中,因此按顺序输出,就是对应的后缀表达式对应的list
        return s2;

    }



    /**
     * 将 中缀表达式转成对应的List
     *
     * @param s
     * @return
     */
    public static List<String> toInfixExpressionList(String s) {
        s = s.trim();
        List<String> ls = new ArrayList<>(s.length());
        //这是指针,用于遍历中缀表达式字符串
        int i = 0;
        //对多位数的拼接
        String str;
        //每遍历一个字符,就放入 c
        char c;
        do {
            if (" ".equals(s.substring(i, i + 1))) {
                i++;
                continue;
            }
            //如果 c 是一个非数字,就放入到 c
            if ((c = s.charAt(i)) < 48 || (c = s.charAt(i)) > 57) {
                ls.add(c + "");
                i++;
            } else {
                //如果是一个数,需要考虑多位数的问题
                //先将 str 置为空字符串
                str = "";
                while (i < s.length() && (c = s.charAt(i)) >= 48 && (c = s.charAt(i)) <= 57) {
                    str += c;
                    i++;
                }
                ls.add(str);

            }
        } while (i < s.length());
        return ls;
    }

    /*
        1. 从左至右扫描,将 3 和 4 压入堆栈
        2. 遇到 + 运算符,因此弹出 4 和 3 (4 为栈顶元素, 3 为次顶元素),计算出 3 + 4 的值,得7,再将 7 入栈
        3. 将 5 入栈
        4. 接下来是 \* 运算符,因此弹出 5 和 7 ,计算出 7 \* 5 = 35 ,将 35 入栈
        5. 将 6 入栈
        6. 最后是 - 运算符,计算出 35 - 6 的值,即 29 ,由此得出最终结果
        */
    public static int calculate(List<String> ls) {
        //创建栈,只需要一个栈即可
        Stack<String> stack = new Stack<>();
        //遍历 ls
        for (String item : ls) {
            //这里使用正则表达式取出数
            //匹配的是多位数
            if (item.matches("\\d+")) {
                //如果是数,直接入栈
                stack.push(item);
            } else {
                int num2 = Integer.valueOf(stack.pop());
                int num1 = Integer.valueOf(stack.pop());
                int res = 0;
                if (item.equals("+")) {
                    res = num1 + num2;
                } else if (item.equals("-")) {
                    // - 和 除的顺序有要求
                    res = num1 - num2;
                } else if (item.equals("*")) {
                    // - 和 除的顺序有要求
                    res = num1 * num2;
                } else if (item.equals("/")) {
                    // - 和 除的顺序有要求
                    res = num1 / num2;
                } else {
                    throw new RuntimeException("运算符有误");
                }
                stack.push(res + "");
            }
        }
        //最后留在 stack 中的数据就是运算结果
        return Integer.valueOf(stack.pop());
    }

    /**
     * 将一个逆波兰表达式,依次将数据和运算符,放入到 ArrayList中
     */
    public static List<String> getList(String suffixExpression) {
        return new ArrayList<>(Arrays.asList(suffixExpression.split(" ")));
    }
}

//编写一个类,Operation 可以返回一个运算符对应的优先级
class Operation{
    //+
    private static int ADD = 1;
    //-
    private static int SUB = 1;
    //*
    private static int MUL = 2;
    // 除/
    private static int DIV = 2;

    //写一个方法,返回对应的优先级数字
    public static int getValue(String operation){
        int result = 0;
        switch (operation){
            case "+":
                result = ADD;
                break;
            case "-":
                result = SUB;
                break;
            case "*":
                result = MUL;
                break;
            case "/":
                result = DIV;
                break;
        }
        return result;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值