036 前缀 中缀 后缀(逆波兰表达式)表达式
前缀表达式
前缀表达式(波兰表达式)
- 前缀表达式又称波兰表达式,前缀表达式的运算符位于操作数之前
- 举例说明:(3 + 4) * 5 -6 对应的前缀表达式就是 - * + 3 4 5 6
前缀表达式课计算机求值
从右至左扫描表达式,遇到数字时,将数字压入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(栈顶元素 和 次顶元素),并将结果入栈;重复上述过程直到表达式的最左端,最后运算出的值即为表达式的结果
例如:(3 + 4) * 5 -6 应的前缀表达式就是 - * + 3 4 5 6
步骤如下:
- 从右至左扫描,将 6、5、4、3压入堆栈
- 遇到 + 运算符,因此 弹出3和4(3为栈顶元素,4为次顶元素),计算出 3+4 的值,得7,再将7入栈
- 接下来是 * 运算符,因此弹出 7 和 5,计算出 7 * 5 = 35 ,将35入栈
- 最后是 - 运算符,计算出 35 - 6 的值,即 29,由此得出最终的结果
中缀表达式
- 中经表达式就是最常见的运算表达式,如:(3 + 4) * 5 -6
- 中缀表达式的求值是我们人最熟悉的,但是对计算机来说却不好操作(前面我们讲的案例就能看到这个问题),因此,在计算结果时,往往会将中缀表达式转成其它表达式来操作(一般转成后缀表达式)
后缀表达式
- 后缀表达式又称逆波兰表达式与前缀表达式相似,只是运算符位于操作数之后
- 举例说明: (3 + 4) * 5 -6 对应的后缀表达式就是:3 4 + 5 * 6 -
正常的表达式 | 逆波兰表达式 |
---|---|
a + b | a b + |
a + (b - c) | a b c - + |
a + (b - c) * d | a b c - d * + |
a + d * (b - c) | a d b c - * + |
a = 1 + 3 | a 1 3 + = |
正常表达式转为后缀表达式的规律:(盲猜)
数字从左向右提取,符号从右向左取;但是先取优先级高的,再取优先级低的。(还是有些不对)
后缀表达式的计算机求值过程
从左至右扫描表达式,遇到数字时,将数字夺入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(次顶元素 和栈顶元素),并将结果入栈;重复上述过程直到表达式的最右端,最后运算得出的值即为表达式的结果
例如:(3 + 4) * 5 - 6 对应的前缀表达式就是 3 4 + 5 * 6 ,针对后缀表达式求值步骤如下:
- 从左至右扫描,将 3 和 4 压入堆栈
- 遇到 + 运算符,因此弹出 4 和 3 (4 为栈顶元素, 3 为次顶元素),计算出 3 + 4 的值,得7,再将 7 入栈
- 将 5 入栈
- 接下来是 * 运算符,因此弹出 5 和 7 ,计算出 7 * 5 = 35 ,将 35 入栈
- 将 6 入栈
- 最后是 - 运算符,计算出 35 - 6 的值,即 29 ,由此得出最终结果
037-038 逆波兰计算器分析和实现
完成一个逆波兰计算器,
- 输入一个逆波兰表达式,使用栈(stack),计算其结果
- 支持小括号和多位整数,因为主讲数据结构,因此简化, 只支持整数的计算
package com.old.stack_036_042;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Stack;
public class PolandNotation {
public static void main(String[] args) {
/*先定义一个逆波兰表达式
(3 + 4) * 5 - 6 => 3 4 + 5 x 6 -
说明:为了方便,逆波兰表达式的数字和符号使用空格隔开
*/
String suffixExpression = "30 4 + 5 * 6 -";
/**
* 思路:
* 1. 先将 "3 4 + 5 x 6 -" 放到 ArrayList 中
* 2. 将 ArrayList 传递给一个方法,遍历 ArrayList 配合栈完成计算
* 将他放入list中的好处是方便取,不然还需要使用 index 取太累了
*/
List<String> list = getList(suffixExpression);
// [3, 4, +, 5, x, 6, -]
System.out.println(list.toString());
//计算对逆波兰表达式的运算
int res = calculate(list);
System.out.println("结果:" + res);
}
/*
1. 从左至右扫描,将 3 和 4 压入堆栈
2. 遇到 + 运算符,因此弹出 4 和 3 (4 为栈顶元素, 3 为次顶元素),计算出 3 + 4 的值,得7,再将 7 入栈
3. 将 5 入栈
4. 接下来是 \* 运算符,因此弹出 5 和 7 ,计算出 7 \* 5 = 35 ,将 35 入栈
5. 将 6 入栈
6. 最后是 - 运算符,计算出 35 - 6 的值,即 29 ,由此得出最终结果
*/
public static int calculate(List<String> ls){
//创建栈,只需要一个栈即可
Stack<String> stack = new Stack<>();
//遍历 ls
for (String item : ls) {
//这里使用正则表达式取出数
//匹配的是多位数
if (item.matches("\\d+")) {
//如果是数,直接入栈
stack.push(item);
}else {
int num2 = Integer.valueOf(stack.pop());
int num1 = Integer.valueOf(stack.pop());
int res = 0;
if (item.equals("+")){
res = num1 + num2;
}else if (item.equals("-")){
// - 和 除的顺序有要求
res = num1 - num2;
}else if (item.equals("*")){
// - 和 除的顺序有要求
res = num1 * num2;
}else if (item.equals("/")){
// - 和 除的顺序有要求
res = num1 / num2;
}else {
throw new RuntimeException("运算符有误");
}
stack.push(res + "");
}
}
//最后留在 stack 中的数据就是运算结果
return Integer.valueOf(stack.pop());
}
/**
* 将一个逆波兰表达式,依次将数据和运算符,放入到 ArrayList中
*/
public static List<String> getList(String suffixExpression){
return new ArrayList<>(Arrays.asList(suffixExpression.split(" ")));
}
}
039-042 中缀表达式转后缀表达式
039 思路解析
这里是将表达式进行转换,而不是计算结果
(个人看法:不管是前缀、中缀、后缀,哪种表达式,他的规律或者说的他其实就是中缀表达式按照要求入栈的顺序)前缀:从右至左扫描表达式。后缀:从左至右扫描
中缀表达式转换炎后缀表达式
后缀表达式适合计算机进行运算,但是人却不太容易写出来,尤其是表达式很长的情况下
具体步骤:
- 初始化两个栈:运算符栈 s1 和 储存中间结果的栈 s2
- 从左至右扫描中缀表达式;
- 遇到操作数时,将其压 s2
- 遇到运算符时,比较其与 s1 栈顶运算符的优先级:
- 如果 s1 为空,或栈顶运算符为 左括号“(” ,则直接将运算符入栈
- 否则,若优先级比栈顶运算符的高,也将运算符压入 s1
- 否则,将 s1 栈顶的运算符弹出并压入 s2 中,再次转到 4-1操作 与 s1 中新的栈顶运算符相比较
040 代码实现1
package com.old.stack_036_042;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Stack;
public class PolandNotation {
public static void main(String[] args) {
/**
* 将中缀表达式转为后缀表达式的结果
* 1. 1 + ((2 + 3) * 4) - 5 => 1 2 3 4 * + 5
* 2. 因为直接对一个字符串进行操作,不太方便,因此,先将 “1 + ((2 + 3) * 4) - 5” 中经表达式转为对应的list
* 即,将 “1 + ((2 + 3) * 4) - 5” =》 ArrayList 【1,+,(】
*/
String expression = "1 + ((2 + 3) * 4) - 5";
List<String> infixExpressionList = toInfixExpressionList(expression);
System.out.println(infixExpressionList);
/*先定义一个逆波兰表达式
(3 + 4) * 5 - 6 => 3 4 + 5 x 6 -
说明:为了方便,逆波兰表达式的数字和符号使用空格隔开
*/
String suffixExpression = "30 4 + 5 * 6 -";
/**
* 思路:
* 1. 先将 "3 4 + 5 x 6 -" 放到 ArrayList 中
* 2. 将 ArrayList 传递给一个方法,遍历 ArrayList 配合栈完成计算
* 将他放入list中的好处是方便取,不然还需要使用 index 取太累了
*/
List<String> list = getList(suffixExpression);
// [3, 4, +, 5, x, 6, -]
System.out.println(list.toString());
//计算对逆波兰表达式的运算
int res = calculate(list);
System.out.println("结果:" + res);
}
/**
* 40P 新增代码
* 将 中缀表达式转成对应的List
* @param s
* @return
*/
public static List<String> toInfixExpressionList(String s){
s = s.trim();
List<String> ls = new ArrayList<>(s.length());
//这是指针,用于遍历中缀表达式字符串
int i = 0;
//对多位数的拼接
String str;
//每遍历一个字符,就放入 c
char c;
do {
if (" ".equals(s.substring(i, i + 1))){
i++;
continue;
}
//如果 c 是一个非数字,就放入到 c
if ((c = s.charAt(i)) < 48 || (c = s.charAt(i)) > 57){
ls.add(c + "");
i++;
}else {
//如果是一个数,需要考虑多位数的问题
//先将 str 置为空字符串
str = "";
while (i < s.length() && (c = s.charAt(i)) >= 48 && (c = s.charAt(i)) <= 57){
str += c;
i++;
}
ls.add(str);
}
}while (i < s.length());
return ls;
}
/*
1. 从左至右扫描,将 3 和 4 压入堆栈
2. 遇到 + 运算符,因此弹出 4 和 3 (4 为栈顶元素, 3 为次顶元素),计算出 3 + 4 的值,得7,再将 7 入栈
3. 将 5 入栈
4. 接下来是 \* 运算符,因此弹出 5 和 7 ,计算出 7 \* 5 = 35 ,将 35 入栈
5. 将 6 入栈
6. 最后是 - 运算符,计算出 35 - 6 的值,即 29 ,由此得出最终结果
*/
public static int calculate(List<String> ls){
//创建栈,只需要一个栈即可
Stack<String> stack = new Stack<>();
//遍历 ls
for (String item : ls) {
//这里使用正则表达式取出数
//匹配的是多位数
if (item.matches("\\d+")) {
//如果是数,直接入栈
stack.push(item);
}else {
int num2 = Integer.valueOf(stack.pop());
int num1 = Integer.valueOf(stack.pop());
int res = 0;
if (item.equals("+")){
res = num1 + num2;
}else if (item.equals("-")){
// - 和 除的顺序有要求
res = num1 - num2;
}else if (item.equals("*")){
// - 和 除的顺序有要求
res = num1 * num2;
}else if (item.equals("/")){
// - 和 除的顺序有要求
res = num1 / num2;
}else {
throw new RuntimeException("运算符有误");
}
stack.push(res + "");
}
}
//最后留在 stack 中的数据就是运算结果
return Integer.valueOf(stack.pop());
}
/**
* 将一个逆波兰表达式,依次将数据和运算符,放入到 ArrayList中
*/
public static List<String> getList(String suffixExpression){
return new ArrayList<>(Arrays.asList(suffixExpression.split(" ")));
}
}
041
package com.old.stack_036_042;
import com.sun.org.apache.regexp.internal.RE;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Stack;
public class PolandNotation {
public static void main(String[] args) {
/**
* 将中缀表达式转为后缀表达式的结果
* 1. 1 + ((2 + 3) * 4) - 5 => 1 2 3 4 * + 5
* 2. 因为直接对一个字符串进行操作,不太方便,因此,先将 “1 + ((2 + 3) * 4) - 5” 中经表达式转为对应的list
* 即,将 “1 + ((2 + 3) * 4) - 5” =》 ArrayList 【1,+,(】
* 3. 将得到的中缀表达式对应的 list =》 后缀表达式对应的 list
* 1 2 3 4 * + 5
*/
String expression = "1 + ((2 + 3) * 4) - 5";
List<String> infixExpressionList = toInfixExpressionList(expression);
System.out.println(infixExpressionList);
List<String> suffixExpressionList = parseSuffixExpressionList(infixExpressionList);
System.out.println(suffixExpressionList);
//计算对逆波兰表达式的运算
int res = calculate(suffixExpressionList);
System.out.println("结果:" + res);
}
/**
* 将得到的中缀表达式对应的 list =》 后缀表达式对应的 list
*
* @param ls
* @return
*/
public static List<String> parseSuffixExpressionList(List<String> ls) {
//定义两个栈,初始化栈
//符号栈
Stack<String> s1 = new Stack<>();
/**
* 存储中间结果的线
* 说明:因为 s2 这个栈,在整个转换过程中,没有 pop 操作,而且后面还需要
* 逆序输出。比较麻烦,所以这里使用 数组,不使用栈
* Stack<String> s2 = new Stack<>();
*/
//储存中间结果
List<String> s2 = new ArrayList<>();
for (String item : ls) {
//如果是一个数,入栈 s2
if (item.matches("\\d+")){
s2.add(item);
}else if (item.equals("(")){
s1.push(item);
}else if (item.equals(")")){
/*
如果是右括号“)”,则依次弹出 s1 栈顶的运算符,并压入 s2,
直到遇到左括号为止,此时将这一对括号丢弃
*/
while (!s1.peek().equals("(")){
s2.add(s1.pop());
}
//将 “(” 弹出栈
s1.pop();
/*
这个循环会将
for (String s : s1) {
if (s.equals("(")){
break;
}
s2.add(s);
}*/
}else {
/*
当 item 的优先级 小于等于 栈顶的运算符 ,将 s1 栈顶的运算符弹出并加入
到 s2 中,再次转到 (4.1步骤)与 s1 中新的栈顶运算符相比较
缺少一个比较优先级高低的方法
*/
while (s1.size() != 0 && Operation.getValue(s1.peek()) >= Operation.getValue(item)){
s2.add(s1.pop());
}
//还需要将 item 压入栈中
s1.push(item);
}
}
//将 s1 中剩余的运算符依次弹出 并加入 s2
while (s1.size() != 0){
s2.add(s1.pop());
}
//注意:因为是存入到 List 中,因此按顺序输出,就是对应的后缀表达式对应的list
return s2;
}
/**
* 将 中缀表达式转成对应的List
*
* @param s
* @return
*/
public static List<String> toInfixExpressionList(String s) {
s = s.trim();
List<String> ls = new ArrayList<>(s.length());
//这是指针,用于遍历中缀表达式字符串
int i = 0;
//对多位数的拼接
String str;
//每遍历一个字符,就放入 c
char c;
do {
if (" ".equals(s.substring(i, i + 1))) {
i++;
continue;
}
//如果 c 是一个非数字,就放入到 c
if ((c = s.charAt(i)) < 48 || (c = s.charAt(i)) > 57) {
ls.add(c + "");
i++;
} else {
//如果是一个数,需要考虑多位数的问题
//先将 str 置为空字符串
str = "";
while (i < s.length() && (c = s.charAt(i)) >= 48 && (c = s.charAt(i)) <= 57) {
str += c;
i++;
}
ls.add(str);
}
} while (i < s.length());
return ls;
}
/*
1. 从左至右扫描,将 3 和 4 压入堆栈
2. 遇到 + 运算符,因此弹出 4 和 3 (4 为栈顶元素, 3 为次顶元素),计算出 3 + 4 的值,得7,再将 7 入栈
3. 将 5 入栈
4. 接下来是 \* 运算符,因此弹出 5 和 7 ,计算出 7 \* 5 = 35 ,将 35 入栈
5. 将 6 入栈
6. 最后是 - 运算符,计算出 35 - 6 的值,即 29 ,由此得出最终结果
*/
public static int calculate(List<String> ls) {
//创建栈,只需要一个栈即可
Stack<String> stack = new Stack<>();
//遍历 ls
for (String item : ls) {
//这里使用正则表达式取出数
//匹配的是多位数
if (item.matches("\\d+")) {
//如果是数,直接入栈
stack.push(item);
} else {
int num2 = Integer.valueOf(stack.pop());
int num1 = Integer.valueOf(stack.pop());
int res = 0;
if (item.equals("+")) {
res = num1 + num2;
} else if (item.equals("-")) {
// - 和 除的顺序有要求
res = num1 - num2;
} else if (item.equals("*")) {
// - 和 除的顺序有要求
res = num1 * num2;
} else if (item.equals("/")) {
// - 和 除的顺序有要求
res = num1 / num2;
} else {
throw new RuntimeException("运算符有误");
}
stack.push(res + "");
}
}
//最后留在 stack 中的数据就是运算结果
return Integer.valueOf(stack.pop());
}
/**
* 将一个逆波兰表达式,依次将数据和运算符,放入到 ArrayList中
*/
public static List<String> getList(String suffixExpression) {
return new ArrayList<>(Arrays.asList(suffixExpression.split(" ")));
}
}
//编写一个类,Operation 可以返回一个运算符对应的优先级
class Operation{
//+
private static int ADD = 1;
//-
private static int SUB = 1;
//*
private static int MUL = 2;
// 除/
private static int DIV = 2;
//写一个方法,返回对应的优先级数字
public static int getValue(String operation){
int result = 0;
switch (operation){
case "+":
result = ADD;
break;
case "-":
result = SUB;
break;
case "*":
result = MUL;
break;
case "/":
result = DIV;
break;
}
return result;
}
}