160 暴力匹配算法解决字符串匹配问题
字符串匹配问题:
- 有一个字符串 str1 = “硅硅谷 尚硅谷你尚硅 尚硅谷你尚硅谷你尚硅你好” ,和一个子串 str2 = “尚硅谷你尚硅你”
- 现在要判断 str1 是否含有 str2 ,如果存在,就返回第一次出现的位置,如果没有则返回 -1
暴力匹配算法
如果用暴力匹配的思路,并假设现在 str1 匹配到 i 位置,子串 str2 匹配到 j 位置,则有:
- 如果当前字符匹配成功,(即 str1[i] == str2[j]) , 即 i++ , j++ , 继续匹配下一个字符
- 如果失配 (即 str1[i] != str[j]),令 i = i (j - 1) , j = 0 。相当于每次匹配失败时,i 回溯,j 位置为 0
- 用暴力方法解决的话会有大量的回溯,每次只移动一位,若是不匹配,移动到下一位接着判断,浪费了大量的时间。(不可行)
- 暴力匹配算法实现
package com.old.kmp_160_163;
public class ViolenceMatch {
public static void main(String[] args) {
System.out.println(violenceMathch("硅硅谷 尚硅谷你尚硅 尚硅谷你尚硅谷你尚硅你好", "尚硅谷你尚硅你-"));
}
//暴力匹配算法实现
public static int violenceMathch(String str1, String str2) {
char[] s1 = str1.toCharArray();
char[] s2 = str2.toCharArray();
int s1Len = s1.length;
int s2Len = s2.length;
int i = 0;
int j = 0;
while (i < s1Len && j < s2Len) { // 保证匹配时不越界
if (s1[i] == s2[j]) {
i++;
j++;
} else {
i = i - (j - 1);
j = 0;
}
}
if (j == s2Len) {
return i - j;
}
/*for (int i = 0; i < s1Len; i++) {
for (int j = 0; j < s2.length; j++) {
if (s1[i] == s2[j]) {
i++;
j++;
} else if (j == s2.length - 1) {
return i;
} else {
i = i - (j - 1);
j = 0;
}
}
}*/
return -1;
}
}
161 KMP 算法解决字符串匹配思路图解
介绍
- kmp 是一个解决字符串在文本串是否出现过,如果出现过,最早出现的位置的经典算法
- Knuth-Morris-Pratt 字符串查找算法 , 简称为 “KMP算法” ,常用于在一个文本串 s 内查找一个模式串 p 的出现位置,这个算法由 Donald Knuth、Vaughan Pratt 、 james H. Morris 三人于 1977 年联合发表,帮取这 3 人的姓氏命名此算法
- KMP方法算法就租用之前判断过信息,通过一个 next 数组,保存模式串中前后最长公共子序列的长度,每次回溯时,通过 next 数组找到,前面匹配过的位置,省去了大量的计算时间
- 参考资料
字符串匹配问题
- 有一个字符串 str = “BBC ABCDAB ABCDABCDABDE” 和一个子串 str2 = “ABCDABD”
- 现在要判断 str1 是否含有 str2 ,如果存在,就返回第一次出现的位置,如果没有,则返回 -1
- 要求:使用 KMP 算法完成判断,不能使用简单的暴力匹配算法
162 KMP算法解决字符串匹配代码实现
package com.old.kmp_160_163;
import java.util.Arrays;
public class KMPAlgorithm {
public static void main(String[] args) {
String str1 = "BBC ABCDAB ABCDABCDABDE";
String str2 = "ABCDABD";
// str2 = "BBC";
int[] next = kmpNext(str2); //[0, 0, 0, 0, 1, 2, 0]
System.out.println(Arrays.toString(next));
System.out.println(kmpSearch(str1, str2, next));
}
//kmp搜索算法
/**
* @param str1 原字符串
* @param str2 子串
* @param next 部分匹配表,是子串对应的部分匹配表
* @return 返回第一个匹配的位置,没有匹配到 -1
*/
public static int kmpSearch(String str1, String str2, int[] next) {
for (int i = 0, j = 0; i < str1.length(); i++) {
//需要考虑不相等 去调整j的大小
//kmp算法的核心点
while (j > 0 && str1.charAt(i) != str2.charAt(j)) {
j = next[j - 1];
}
if (str1.charAt(i) == str2.charAt(j)) {
j++;
}
if (j == str2.length()) {
//找到了
return i - j + 1;
}
}
return -1;
}
//获取到一个字符串(子串)部分匹配值
public static int[] kmpNext(String dest) {
//创建一个 next 数组 保存 部分匹配值
int[] next = new int[dest.length()];
//如果字符串是长度为1,部分匹配值就是0
next[0] = 0;
for (int i = 1, j = 0; i < dest.length(); i++) {
// dest.charAt(i) != dest.charAt(j) ,需要从 next[j - 1] 获取新的j
// 直到我们发现有 dest.charAt(i) == dest.charAt(j) 成立才退出
//这是 kmp 算法的核心点
while (j > 0 && dest.charAt(i) != dest.charAt(j)) {
j = next[j - 1];
}
//当 dest.charAt(i) == dest.charAt(j) 满足时,部分匹配值就是 +1
if (dest.charAt(i) == dest.charAt(j)) {
j++;
}
next[i] = j;
}
return next;
}
}