164 贪心算法的基本介绍
集合覆盖问题
假设存在下面需要付费的广播台,以及广播台的信号可以覆盖的地区。如何选择最少的广播台,让所有的地区都可以接收到信号
广播台 | 覆盖地区 |
---|---|
k1 | 北京,上海,天津 |
k2 | 广州,北京,深圳 |
k3 | 成都,上海,杭州 |
k4 | 上海,天津 |
k5 | 杭州 ,大连 |
贪心算法介绍
- 贪心算法(贪婪算法)指在对问题进行求解时,在每一步选择中都采取最好或者最优(即最有利)的选择,从而希望能够导致结果是最好或者最优的算法
- 贪心算法所得到的结果不一定最优的结果(有时候会是最优解),但是都是相对近似(接近)最优解的结果
思路分析:
最简单的方法,穷举法,列出每个可能的广播台的集合,这被称为幂集。假设总的有n个广播台,则广播台的组合总共有 2 n - 1 个,假设每秒可以计算10个子集,如图:
165 贪心算法解决集合覆盖思路图解
思路分析
目前并没有算法可以快速计算得到准备的值,使用贪心算法,则可以得到非常接近的解,并且效率高。选择策略上,因为需要覆盖全部地区的最小集合:
- 遍历所有的广播电台,找到一个覆盖了最多
未覆盖的地区
的电台(此电台可能 包含一些已覆盖的地区,但没有关系 - 将这个电台加入到一个集合中(比如 ArrayList),想办法把该电台覆盖在地区下次比较时去掉
- 重复第1步直到覆盖了全部的地区
166 贪心算法解决集合覆盖代码实现
package com.old.greedy_164_167;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;
public class GreedyAlgorithm {
public static void main(String[] args) {
//创建广播电台,放入 Map
Map<String, HashSet<String>> broadcasts = new HashMap<>();
HashSet<String> addrSet1 = new HashSet<>();
addrSet1.add("北京");
addrSet1.add("上海");
addrSet1.add("天津");
broadcasts.put("k1", addrSet1);
HashSet<String> addrSet2 = new HashSet<>();
addrSet2.add("广州");
addrSet2.add("北京");
addrSet2.add("深圳");
broadcasts.put("k2", addrSet2);
HashSet<String> addrSet3 = new HashSet<>();
addrSet3.add("成都");
addrSet3.add("上海");
addrSet3.add("杭州");
broadcasts.put("k3", addrSet3);
HashSet<String> addrSet4 = new HashSet<>();
addrSet4.add("上海");
addrSet4.add("天津");
broadcasts.put("k4", addrSet4);
HashSet<String> addrSet5 = new HashSet<>();
addrSet5.add("杭州");
addrSet5.add("大连");
broadcasts.put("k5", addrSet5);
System.out.println(broadcasts);
HashSet<String> allAreas = new HashSet<>();
broadcasts.values().forEach(allAreas::addAll);
//所有地址
/*allAreas.add("北京");
allAreas.add("上海");
allAreas.add("天津");
allAreas.add("广州");
allAreas.add("深圳");
allAreas.add("成都");
allAreas.add("杭州");
allAreas.add("大连");*/
System.out.println(allAreas);
//创建ArraryList 存放选择的电台集合
ArrayList<String> selects = new ArrayList<>();
//定义一个临时的集合,在遍历的过程中上,存放遍历过程中的电台覆盖的地区和当前还没有覆盖的地区
//的交集
HashSet<String> tempSet = new HashSet<>();
//定义给 maxKey,保存在一次遍历过程中,能够覆盖最大未覆盖的地区对应的电台的key
//如果 maxKey 不为null,则会加入到 selects
String maxKey = null;
while (!allAreas.isEmpty()) {
//每进行一次需要,将 maxKey置空
maxKey = null;
for (String key : broadcasts.keySet()) {
//每进行一次for
tempSet.clear();
//当前这个 key 覆盖的地区
HashSet<String> areas = broadcasts.get(key);
tempSet.addAll(areas);
//求出 tempSet 和 allAreas的交集,交集会赋给 tempSet
tempSet.retainAll(allAreas);
//如果当前这个集合包含的未覆盖地区的数量,比 maxKey 指向的集合地区还多
//tempSet.size() > broadcasts.get(maxKey).size() 这句体现出了贪心算法,每次都是选最优的
if (tempSet.size() > 0 &&
(maxKey == null || tempSet.size() > broadcasts.get(maxKey).size())
) {
maxKey = key;
}
}
//maxKey 不等于空,加入 selects
if (maxKey != null) {
selects.add(maxKey);
//将 maxKey 指向的广播电台覆盖的地区,从 allAreas 去掉
allAreas.removeAll(broadcasts.get(maxKey));
}
}
//正确午安安:k1,k2,k3,k5
System.out.println(selects);
}
}
结果
{k1=[上海, 天津, 北京], k2=[广州, 北京, 深圳], k3=[成都, 上海, 杭州], k4=[上海, 天津], k5=[大连, 杭州]}
[成都, 上海, 广州, 天津, 大连, 杭州, 北京, 深圳]
[k1, k2, k3, k5]
167 贪心算法解决集合覆盖注意事项
- 贪心算法所得到的结果不一定是最优的结果(有时候会是最优解)。但是都是相对挖(接近)最优解的结果
- 比如上题的算法选出的是 k1, k2, k3, k5 符合覆盖了全部的地区
- 但是发现:k2,k3,k4,k5 也可以覆盖全部地区,如果 k2 的使用成本低于 k1 ,那么上题的 k1, k2, k3, k5 虽然满足条件,但并不是最优解