(CSF)Classification Saliency-Based Rule for Visible and Infrared Image Fusion

1.摘要

由于深度特征图的不可解释性,现有的图像融合方法一直采用手动融合规则,这就限制了网络的性能并且导致失真。针对这些局限性,本文首次以深度学习的方式实现了特征图的可解释重要性评估。我们提出了一种基于像素分类显著性的融合规则。首先,我们采用一个分类器来分类两种类型的源图像,捕获两个类之间的差异和独特性。然后,每个像素的重要性被量化为它对分类结果的贡献。重要性以分类显著图的形式示出。最后,根据显著性图对特征图进行融合以生成融合结果。

2.引言

本篇论文的贡献点:

  • 设计一种新的基于深度学习的融合规则,一般来说,我们采用分类器来分类可见光和红外特征图。然后,我们依靠特征图中每个像素对分类结果的贡献/显著性来评估其重要性/唯一性。从而突破了深度学习应用于融合规则的瓶颈。
  • 现有的基于深度学习的方法需要手动定义要保留的特征,它们执行简单的融合规则,而不考虑特征的重要性或重要性。相比之下,我们的方法依赖于预先训练的分类器来自动保留重要/独特的特征。此外,与现有的融合规则相比,本文提出的基于分类显著性的融合规则具有更高的可解释性,特别是在CNN提取的特征图具有不可解释性的情况下。
  • 此外,与现有的融合规则相比,本文提出的基于分类显著性的融合规则具有更高的可解释性,特别是在CNN提取的特征图具有不可解释性的情况下。

3. 相关工作

现有的VIF

在过去的几十年中,已经提出了许多融合方法的VIF。它们大多基于传统的融合框架。首先,应用多种传统方法从源图像中提取特征,例如多尺度变换、稀疏表示、子空间、低秩表示等。

在一些基于深度学习的方法中,特征提取是通过CNN实现的。然后,通过一些手动设计的融合规则的特征进行融合。最后,作为特征提取的逆过程,特征重构被用于生成融合结果。

此外,本文还提出了一些端到端的融合方法,打破了传统的融合框架,不需要设计融合规则,包括基于GAN的方法。融合过程不需要设计融合规则,而是贯穿于整个过程的端到端实现。不同之处在于,他们手动设置要保留的特征(源图像中的部分信息),并依赖这些特征来训练网络。例如,一些方法试图保留红外图像的强度分布和可见光图像中的梯度

现有的融合规则

到目前为止,融合规则的选择仍然是有限的,并且是手动设计的,包括choose-max ,addition ,average ,Max-l1 和l1-Norm规则。即使融合方法的整体框架相同,不同的融合规则也会对融合性能产生决定性的影响。

现有的融合规则对于融合特征是粗糙的原因如下。由于CNN的不可解释性和不可理解性,特征图中表示的特定特征是不可知的。由于特征图的未知性和可变性,很难度量特征图不同区域的重要性。因此,通过分配像素级权重图来设计融合规则是毫无根据的,该权重图考虑了特征图的像素级重要性。在这种情况下,有限的融合规则的选择和他们的粗糙度限制了融合结果的改善。为了解决这个问题,我们提出了一种新的基于分类显著性的融合规则。考虑到可解释神经网络的可行性,我们依靠二元分类器来评估特征图中每个像素的贡献/显着性,指示是否需要将其融合到结果中。然后,生成分类显著图以融合两种类型的特征图。该方法被称为基于分类显著性的融合方法(CSF)。

4. proposed method

我们首先使用编码器来提取特征图作为源图像的综合描述
在这里插入图片描述
{ ϕ v 1 , . . . , ϕ v N } = f e ( V ) , { ϕ i 1 , . . . , ϕ i N } = f e ( I ) \lbrace{\phi^1_v,...,\phi^N_v}\rbrace=f_e(V),\lbrace\phi_i^1,...,\phi_i^N\rbrace=f_e(I) { ϕv1,...,ϕvN}=fe(V),{ ϕi1,...,ϕiN}=fe(I)
其中 f e f_e fe表示从encoder中学到的提取函数, ϕ v 和 ϕ i \phi_v和\phi_i ϕvϕi分别表示从 V V V I I I中提取的特征图, N N N表示特征图的数量

{ ϕ f 1 , . . . , ϕ f N } = { f ϕ ( ϕ v 1 , ϕ i 1 ) , . . . , f ϕ ( ϕ v N , ϕ i N ) } \lbrace \phi^1_f,...,\phi_f^N\rbrace=\lbrace f_{\phi}(\phi_v^1,\phi_i^1),...,f_{\phi}(\phi_v^N,\phi_i^N) \rbrace { ϕf1,...,ϕfN}={ fϕ(ϕv1,ϕi1),...,fϕ(ϕvN,ϕiN)}
ϕ f \phi_f ϕf表示融合后的特征图, f ϕ 表示提出的融合规则 f_{\phi}表示提出的融合规则 fϕ表示提出的融合规则,最后的融合图像由 f e f_e fe逆变换 f d f_d fd得到
F = f d ( ϕ f 1 , . . . ,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值