AcWing 826. 单链表————用数组模拟单链表

题目描述

实现一个单链表,链表初始为空,支持三种操作:

向链表头插入一个数;
删除第 k k k 个插入的数后面的数;
在第 k k k 个插入的数后插入一个数。
现在要对该链表进行 M M M 次操作,进行完所有操作后,从头到尾输出整个链表。

**注意:**题目中第 k k k 个插入的数并不是指当前链表的第 k k k 个数。例如操作过程中一共插入了 n n n 个数,则按照插入的时间顺序,这 n n n 个数依次为:第 1 1 1 个插入的数,第 2 2 2 个插入的数,…第 n n n 个插入的数。

输入格式
第一行包含整数 M M M,表示操作次数。

接下来 M M M 行,每行包含一个操作命令,操作命令可能为以下几种:

  1. H x,表示向链表头插入一个数 x x x

  2. D k,表示删除第 k k k 个插入的数后面的数(当 k k k 0 0 0 时,表示删除头结点)。

  3. I k x,表示在第 k k k 个插入的数后面插入一个数 x x x(此操作中 k k k 均大于 0 0 0)。

输出格式
共一行,将整个链表从头到尾输出。

数据范围
1 ≤ M ≤ 100000 1≤M≤100000 1M100000
所有操作保证合法。

输入样例:
10
H 9
I 1 1
D 1
D 0
H 6
I 3 6
I 4 5
I 4 5
I 3 4
D 6
输出样例:
6 4 6 5

算法

用数组模拟单链表
C++ 代码
/*
    用数组模拟单链表
*/
#include <iostream>

using namespace std;

const int N = 1e5 + 10;

//head 表示头结点的下标
//e[i] 表示节点i的值
//ne[i] 表示节点i的next指针是多少
//idx 表示当前已经用到数组的哪个下标了

int e[N], ne[N];

int n, head, idx;

//初始化链表
void init() {
    
    head = -1;
    
    idx = 0;
    
}

//向链表头插入数x
void insert_to_head(int x) {
    
    e[idx] = x;
    
    ne[idx] = head;
    
    head = idx;
    
    idx ++;
    
}

//删除第 k 个插入的数后面的数;
void remove(int k) {
    
    if(k == -1) head = ne[head];
    
    else ne[k] = ne[ne[k]];
}

//在第 k 个插入的数后插入一个数x
void add(int k, int x) {
    
    e[idx] = x;
    
    ne[idx] = ne[k];
    
    ne[k] = idx;
    
    idx ++;
    
}

int main() {
    
    cin >> n;
    
    init();
    
    while(n --) {
        
        char c;
        
        cin >> c;
        
        if(c == 'H') {
            
            int x;
            
            cin >> x;
            
            insert_to_head(x);
        } else if(c == 'D') {
            
            int k;
            
            cin >> k;
            
            remove(k - 1);
        } else {
            
            int k, x;
              
            cin >> k >> x;
            
            add(k - 1, x);
        }
        
    }
    
    for(int i = head; i != -1; i = ne[i]) {
        
        cout << e[i] << " ";
    }
    
    return 0;
}

原博文链接

堆排序是一种高效的排序算法,它利用了堆的数据结构实现排序。堆是一个完全二叉树,具有以下性质:对于任意节点 i,其父节点的值小于等于子节点的值。 堆排序的基本思路如下: 1. 构建最大堆:将待排序的数组看作是一个完全二叉树,从最后一个非叶子节点开始,依次向上调整每个节点,使得以该节点为根的子树满足最大堆的性质。 2. 将堆顶元素与最后一个元素交换:将最大堆的堆顶元素(即数组的第一个元素)与数组最后一个元素交换位置,此时最大元素就位于数组的最后。 3. 调整堆:将剩余元素重新调整为最大堆。 4. 重复步骤 2 和步骤 3,直到所有元素都排序完成。 以下是堆排序的 C++ 代码实现: ```cpp #include <iostream> using namespace std; // 调整以 root 为根的子树为最大堆 void heapify(int arr[], int n, int root) { int largest = root; // 假设根节点最大 int left = 2 * root + 1; // 左子节点索引 int right = 2 * root + 2; // 右子节点索引 // 若左子节点大于根节点,更新最大值索引 if (left < n && arr[left] > arr[largest]) { largest = left; } // 若右子节点大于最大值节点,更新最大值索引 if (right < n && arr[right] > arr[largest]) { largest = right; } // 若最大值不是根节点,交换根节点和最大值 if (largest != root) { swap(arr[root], arr[largest]); // 递归调整交换后的子树 heapify(arr, n, largest); } } void heapSort(int arr[], int n) { // 构建最大堆 for (int i = n / 2 - 1; i >= 0; i--) { heapify(arr, n, i); } // 逐步取出最大值,调整堆 for (int i = n - 1; i > 0; i--) { swap(arr[0], arr[i]); heapify(arr, i, 0); } } int main() { int arr[] = {4, 10, 3, 5, 1}; int n = sizeof(arr) / sizeof(arr[0]); heapSort(arr, n); cout << "Sorted array: "; for (int i = 0; i < n; i++) { cout << arr[i] << " "; } cout << endl; return 0; } ``` 以上就是堆排序的基本思路和实现方法。堆排序的时间复杂度为 O(nlogn),其中 n 为数组的长度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值