数据结构之查找

查找大法

1、顺序查找与二分法查找


2、顺序二叉树与平衡二叉树

顺序二叉树

  • 题目:下列哪个序列不是顺序二叉树的搜索序列

    如: a 1 , a 2 , a 3 , a 4 , a 5 , a 6 a_1, a_2, a_3, a_4,a_5,a_6 a1,a2,a3,a4,a5,a6

    如何判断:对于 a i a_i ai来说,如果 a i + 1 > a i a_{i+1}>a_i ai+1>ai,那么,所有 n > i 都有 a n > a i n>i都有a_n>a_i n>i都有an>ai

  • 计算顺序二叉树的成功查找长度

    A S L 成功 = ∑ 第 i 层节点数 ∗ i 节点总数 ASL_{成功} = \frac{\sum{第i层节点数*i}}{节点总数} ASL成功=节点总数i层节点数i

  • 计算顺序二叉树的失败查找长度

    A S L 失败 = ∑ 空链的父节点高度 空链的个数 ASL_{失败} = \frac{\sum{空链的父节点高度}}{空链的个数} ASL失败=空链的个数空链的父节点高度

平衡二叉树

  • 平衡因子:子树的高度子树的高度, h 左 − h 右 h_左-h_右 hh

  • 分支节点:度不为0的节点

  • 平衡二叉树的旋转

    • 对节点A左旋:

      1、A 孩子的孩子变成A孩子:A->right = A->right->left

      2、A孩子取代A的位置

      3、A变成孩子的孩子:A->right->left = A

    • 对节点A右旋:

      1、A 左孩子的右孩子变成A的左孩子:A->left = A->left->right

      2、A的左孩子取代A的位置

      3、A变成左孩子的右孩子:A->left->right = A

  • 平衡二叉树的插入(王道书 P 274 P_{274} P274

    • 基本假设:找到插入路径上离插入点最近的不平衡节点AA一般是插入树C爷爷,设BC父亲

      第一是找不平衡节点

      第二是C可能是新节点也可能不是,是在C子树或者C处插入,但是C没有失衡

      第三是B必须是插入路径上的节点,插入路径和排序二叉树一样的

    • 核心思想:将中间大小的节点旋转到A的位置,这里很混乱,没关系,看下面的

    • 1、LL平衡旋转:A的**左(L)孩子是BB左(L)**孩子是C

      1)单旋转即可

      2)对A点右旋一次即可

      3)核心思想:显然有A>B>C,最后右旋一下,B(中间大小)取代了A

    • 2、RR平衡旋转:A的**右(R)孩子是BB右(R)**孩子是C

      1)左单旋转即可

      2)对A点左旋一次即可

      3)核心思想:显然有A<B<C,最后右旋一下,B(中间大小)取代了A

    • 3、LR平衡旋转:A的**左(L)孩子是BB右(R)**孩子是C

      1)先左后右旋转

      2)先对B旋,后对A

      3)核心思想:显然是B<C<A,最后是把C旋转到A的位置

      4)解释:

      • B左旋:将C提升到B的位置,提升第一次,C变成儿子,B变成孙子
      • A右旋:将C提升到A的位置,提升第二次,C变成爷爷,A变成儿子
    • 4、RL平衡旋转:A的**右(R)孩子是BB左(L)**孩子是C

      1)先右后左旋转

      2)先对B旋,后对A

      3)核心思想:显然是B>C>A,最后是把C旋转到A的位置

      4)解释:

      • B右旋:将C提升到B的位置,提升第一次,C变成儿子,B变成孙子
      • A左旋:将C提升到A的位置,提升第二次,C变成爷爷,A变成儿子
  • 平衡二叉树的删除

    • 基本假设:w是需要删除的节点,从w向上面找,离w最近且失衡的节点为z

      z有左右子树,左右子树高度差大于1,设高度较子树根节点y

      y有左右子树,左右子树高度差小于等于1,设高度较子树根节点x

      如果y的左右子树高度相等,那么x任意左还是右

      还是有,z是爷爷,y是父亲,x是孙子

    • 核心思想:还是把中间大小的节点旋转到z

    • 1、LL平衡旋转:z的**左(L)孩子是yy左(L)**孩子是x

      1)单旋转即可

      2)对z点右旋一次即可

      3)核心思想:显然有z>y>x,最后右旋一下,y(中间大小)取代了z

    • 2、RR平衡旋转:z的**右(R)孩子是yy右(R)**孩子是x

      1)左单旋转即可

      2)对z点左旋一次即可

      3)核心思想:显然有z<y<x,最后右旋一下,y(中间大小)取代了z

    • 3、LR平衡旋转:z的**左(L)孩子是yy右(R)**孩子是x

      1)先左后右旋转

      2)先对y旋,后对z

      3)核心思想:显然是y<x<z,最后是把x旋转到z的位置

    • 4、RL平衡旋转:z的**右(R)孩子是yy左(L)**孩子是x

      1)先右后左旋转

      2)先对y旋,后对z

      3)核心思想:显然是y>x>z,最后是把x旋转到z的位置

  • 树高为h时,节点数n的最小值怎么计算

    1、先给出答案: n ( h ) m i n = n ( h − 1 ) m i n + n ( h − 2 ) m i n + 1 n(h)_{min} = n(h-1)_{min} + n(h-2)_{min} + 1 n(h)min=n(h1)min+n(h2)min+1

    ​ 且 n ( 0 ) m i n = 0 ; n ( 1 ) m i n = 1 ; n ( 2 ) m i n = 2 ; n(0)_{min} = 0;n(1)_{min} = 1 ; n(2)_{min} = 2; n(0)min=0;n(1)min=1;n(2)min=2; 这个应该很好得知,就像下面图示一样,

    2、证明吧:首先,设定 n ( x ) m i n n(x)_{min} n(x)min为树高为 x x x时,最少需要的节点数目

    3、假设现在有两棵 A V L AVL AVL,且 A V L 1 AVL_1 AVL1的树高为h-1 A V L 2 AVL_2 AVL2的树高为h-2

    4、树高为hAVL,左右子树也是一颗AVL,且左右子树的树高差不超过1

    5、也就是说,左右子树的树高要么都为h-1(方法1);

    ​ 要么一个为h-1,一个为h-2(方法2)。

    6、既然想要追求节点少,那么肯定是树高最小最好,肯定选择方法2。

    ​ 不妨设左子树为h-1,右子树为h-2

    7、那就可以用上述的 A V L 1 和 A V L 2 AVL_1 和 AVL_2 AVL1AVL2来作为AVL的两棵子树,再加上一个新的根节点

    8、那么节点数目递推公式就是: n ( h ) m i n = n ( h − 1 ) m i n + n ( h − 2 ) m i n + 1 n(h)_{min} = n(h-1)_{min} + n(h-2)_{min} + 1 n(h)min=n(h1)min+n(h2)min+1

    { n ( h ) m i n 高度为 h 的最小节点数目 n ( h − 1 ) m i n 高度为 h − 1 左子树的最小节点数目 n ( h − 2 ) m i n 高度为 h − 2 右子树的最小节点数目 1 额外的根节点数目 \begin{cases} n(h)_{min} & 高度为 h 的最小节点数目\\ n(h-1)_{min} & 高度为 h-1 左子树的最小节点数目\\ n(h-2)_{min} & 高度为 h-2 右子树的最小节点数目\\ 1 & 额外的根节点数目 \end{cases} n(h)minn(h1)minn(h2)min1高度为h的最小节点数目高度为h1左子树的最小节点数目高度为h2右子树的最小节点数目额外的根节点数目

A
B
C
显然左边分别是h为1和2的情况

3、红黑树(916目前不考,先留坑)

4、B树

 首先,B-Tree称为B树或者B-树,也就是说B树和B-树其实是一个东西,本篇用B树这个名字。B树是用来外查找的,也就说在磁盘上面查找,因为可能内容太多,不适合全部加载到内存中来。

  • 高度与关键字数关系先给出: l o g m ( n + 1 ) ≤ h ≤ l o g ⌈ m / 2 ⌉ ( n + 1 2 ) + 1 log_m(n+1) \leq h \leq log_{\lceil m/2 \rceil}(\frac{n+1}{2})+1 logm(n+1)hlogm/2(2n+1)+1

    1、n是关键字数,m是阶数,h是树高

    2、每个节点关键字最多,那么树高度最低: n ≤ ( m − 1 ) ( 1 + m + m 2 + m 3 + . . . + m h − 1 ) n \leq (m-1)(1+m+m^2+m^3+...+m^{h-1}) n(m1)(1+m+m2+m3+...+mh1)

    3、每个节点关键字最少,那么树高度最高

  • B树的一些概念

    1、终端节点:下图的倒数第二层节点就是终端节点(也就是最后一层非空节点

    2、叶子节点:最后一层的null节点,也就是空节点叫做叶子节点

22
5 11
36 45
null
null
null
null
null
null
  • B树的特性(这几个特性决定B树的插入删除操作)

    1、树中每个节点之多有m子树,至多有m-1关键字

    2、若根节点不是终端节点,则至少有两棵子树。(对于根节点不要求子树很多)

    3、除了根节点之外的所有非叶子节点,至少有 ⌈ m / 2 ⌉ \lceil m/2\rceil m/2(向上取整)棵子树,至少含有 ⌈ ( m − 1 ) / 2 ⌉ \lceil (m-1)/2\rceil ⌈(m1)/2个关键字。

    4、所有的非叶子节点的结构如下:n是总数,P是子树,K是关键字
    | n | P0 | K1 | P1 | K2 | ... | Kn | Pn |

    Ki关键字小于Pi子树的所有关键字,Ki关键字大于Pi-1子树的所有关键字,且关键字是有序的。

    5、所有的叶节点都出现在同一层次,并且不携带信息,也就是为null。说明每棵子树高相同的。

  • B树的查找

    1、先将一个节点的信息读入内存,然后用顺序查找或者折半查找的方法,找到关键字或者找到子树。

    2、如果找到关键字就结束,如果找到子树就将当前节点写入磁盘,重复上述过程

  • B树的插入

    核心:还是需要满足B树的五条性质。

    步骤:

    • 找到最低层的某个终端节点

    • 进行插入,分情况情况讨论

      如果插入该关键字时候,该终端节点的关键字个数仍然是 [ ⌈ m / 2 ⌉ − 1 , m − 1 ] [\lceil m/2 \rceil-1,m-1] [⌈m/21,m1]这个区间中,则直接插入

      如果插入关键字时候,关键字数目溢出了,那么,就先将关键字插入对应位置得到一串新的关键字序列,取得这串新关键字序列中间值m,并以m将序列分割成两段。将m插入到本节点的父节点,并将两段序列变成父节点的两个子树孩子。同时判断父节点是否超过了,超过了继续向上迭代。直到根节点仍然超过了,那么就新建根节点,B树高加1。

  • B树的删除

    核心:还是满足B树的五条性质

    步骤:

    • 找到需要删除的节点,直接删除

    • 看是否仍然是B树

      删除节点是非终端节点的关键字:

      • 用其前驱或者后继节点替代就行,这样就相当于删除了其前驱或者后继节点
      • 然后依次迭代,知道变成删除终端节点

      删除节点是终端节点的关键字:

      • 如果删除了关键字之后,关键字个数仍然是 [ ⌈ m / 2 ⌉ − 1 , m − 1 ] [\lceil m/2 \rceil-1,m-1] [⌈m/21,m1],直接删除,而且终端节点没有子树,所以不用考虑子树如何处理。

      • 如果删除了关键字之后,关键字个数不够 ⌈ m / 2 ⌉ \lceil m/2 \rceil m/2

        其左(或右)兄弟够借一个节点给他也就是左(或右)兄弟节点关键字借出一个仍然满足 [ ⌈ m / 2 ⌉ − 1 , m − 1 ] [\lceil m/2 \rceil-1,m-1] [⌈m/21,m1],那么就用其前驱(或后继)关键字替换位置,其**前驱的前驱(或后继的后继)替换前驱(或后继)**关键字的位置

        如果其左右兄弟都不够借:说明本节点以及兄弟节点的关键字个数肯定等于 ⌈ m / 2 ⌉ − 1 \lceil m/2 \rceil-1 m/21,这样,就可以将两兄弟以及两兄弟在父节点中包围的关键字合并成一个新节点。至于这样为什么不会超过关键字个数的要求呢?看下面的解释!!!

  • 为什么B树的关键字要求为** [ ⌈ m / 2 ⌉ − 1 , m − 1 ] [\lceil m/2 \rceil-1,m-1] [⌈m/21,m1]**呢?

    首先,关键字最大值确实为 m − 1 m-1 m1,这个没问题,因为是有m棵子树,关键字可以少一个,仍然能够走正确的路径寻找。可以参看性质4

    然后,前面说到删除关键字时候,兄弟节点需要合并的情况。那么本节点以及兄弟节点的关键字个数肯定等于关键字个数最小值才行的。不妨设最小值为n

    要求合并之后关键字相加仍然满足关键字个数要求。有:

    ( n − 1 ) + 1 + n ≤ m − 1 (n-1)+1+n \leq m-1 (n1)+1+nm1(n-1)是需要删除一个关键字,1是父节点中的一个关键字,n是兄弟节点的关键字个数

    n ≤ m − 1 2 n \leq \frac{m-1}{2} n2m1,但是需要关键字多,这样查找效率高,所以 n = m − 1 2 n = \frac{m-1}{2} n=2m1,考虑到奇偶, n = ⌈ m / 2 ⌉ − 1 n=\lceil m/2 \rceil-1 n=m/21为通式(带入 m = 5 和 m = 4 m=5和m=4 m=5m=4很容易验证正确性)

5、B+树

 B+树是数据库的出现而出现的B树的一种变形,它的插入以及删除和B树的操作基本类似,现在只讲讲它的性质以及和B树的不同点。

B+树的一些概念

  • 叶子节点:这个和B树不同,这里就是指最低层的非空节点,和普通的树一样
  • 分支节点:非叶子节点

B+树的性质

  • 1、每个分支节点最多有m棵子树(与B树没什么区别)
  • 2、非叶根节点至少有两棵子树,其他每个分支节点至少有 ⌈ m / 2 ⌉ \lceil m/2 \rceil m/2棵子树(有点区别)
  • 3、节点的子树个数与关键字个数相等(有区别)
  • 4、所有叶节点关键字才有包含数据的指针,且关键字有序(有区别)
  • 5、所有分支节点中关键字仅包含子节点的指针,而且此关键字是子节点关键字的最大值(大区别)

B树与B+树区别

  • 1、关键字个数不一样:B+树含有n个关键字和n棵子树,B树含有n-1个关键字和n棵子树。
  • 2、关键字个数的范围不同: ⌈ m / 2 ⌉ ≤ N B + 关键字个数 ≤ m \lceil m/2 \rceil \leq N_{B+关键字个数} \leq m m/2NB+关键字个数m 2 ≤ N B + 根节点 ≤ m 2 \leq N_{B+根节点} \leq m 2NB+根节点m), ⌈ m / 2 ⌉ − 1 ≤ N B 树关键字个数 ≤ m − 1 \lceil m/2 \rceil -1 \leq N_{B树关键字个数} \leq m - 1 m/21NB树关键字个数m1 1 ≤ N B 树根节点 ≤ m − 1 1 \leq N_{B树根节点} \leq m-1 1NB树根节点m1
  • 3、B+树中,只有叶子节点包含数据索引其他节点只包含子节点索引B树中,所有非空节点都包含数据索引子节点索引
  • 4、B+树中,关键字等于子树最大值B树中,关键字大于边子树小于边子树。
  • 5、查找操作有点不一样:B+树需要查找到叶子节点中关键字相等的地方,B树仅需要查找到关键字相等的地方。
  • 6、B+树每个叶子节点直接以链表形式存储,所以,B+树还可以用链式查找方式查找

6、散列查找

 通过散列函数,直接将关键字映射到地址。散列函数记为 H a s h ( K e y ) = A d d r ( 下标或者索引 ) Hash(Key) = Addr(下标或者索引) Hash(Key)=Addr(下标或者索引),理想情况下,如果没有发生碰撞,那么散列函数的查找效率时间复杂度为 O ( 1 ) O(1) O(1)。是一个典型的空间换时间的数据结构。

 这一小节,最重要的数学科目是《数论》。

  • 常见的散列函数

    1、直接定址法: H a s h ( K e y ) = a × K e y + b Hash(Key) = a\times Key + b Hash(Key)=a×Key+b,这个不会发生碰撞,但是空位较多

    2、除留余数法: H a s h ( K e y ) = K e y % p Hash(Key) = Key \%p Hash(Key)=Key%p,控制好p是关键,减少碰撞

    3、数字分析法:根据关键字的数据特征,制定对应的哈希函数。

    4、平方取中法:将关键字平方之后,取中间几位作为散列地址。

  • 处理冲突的方法

    1、开放定址法

    • 线性探测法:发生冲突之后,就依次将地址加k(k=0,1,2,3……)知道找到空闲位置;寻找数据时也是先找到初步地址处,然后依次向下一个元素查找。
    • 平方探测法:将上述的k换成 0 2 , 1 2 , − 1 2 , 2 2 , − 2 2 . . . 0^2,1^2,-1^2,2^2,-2^2... 02,12,12,22,22...,这样是为了不让元素太聚集,提高查找和插入效率。
    • 双散列法:发生冲突后,用第二个散列函数计算地址增量。
    • 伪随机序列法:增量为伪随机序列。我的认为是:伪随机序列是构建此数据结构提前生成的一个没有规律的数列。

    2、拉链法:发生冲突后,用链表依次存储冲突元素在同一地址,因此,整个哈希地址块存储的不是元素,而是链表头指针。

  • 性能分析

    散列表查找效率主要取决于三个因素:散列函数,处理冲突的方法和装填因子

    装填因子:记为 α , α = 表中记录数 n 散列表长度 m \alpha, \quad \alpha = \frac{表中记录数n}{散列表长度m} α,α=散列表长度m表中记录数n,可以看出装填因子依赖于两者的比值。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值