空间曲线曲面以及梯散旋度

空间曲线与切线

注意,说的是空间,那就涉及到三个变量。

(1)参数方程

{ x = x ( t ) , y = y ( t ) , z = z ( t ) , t ∈ I \begin{cases}x= x(t),\\y=y(t),\\z=z(t), \end{cases} t \in I x=x(t),y=y(t),z=z(t),tI

在点 p ( x 0 , y 0 , z 0 ) , ( 即 t = t 0 ) p(x_0,y_0,z_0),(即t = t_0) p(x0,y0,z0),(t=t0)处的切向量 τ = ( x ′ ( t 0 ) , y ′ ( t 0 ) , z ′ ( t 0 ) ) \boldsymbol{\tau} = (x'(t_0),y'(t_0),z'(t_0)) τ=(x(t0),y(t0),z(t0))

切线方程: x − x 0 x ′ ( t 0 ) = y − y 0 y ′ ( t 0 ) = z − z 0 z ′ ( t 0 ) \frac{x-x_0}{x'(t_0)} = \frac{y-y_0}{y'(t_0)} = \frac{z-z_0}{z'(t_0)} x(t0)xx0=y(t0)yy0=z(t0)zz0

法平面方程: x ′ ( t 0 ) ( x − x 0 ) + y ′ ( t 0 ) ( y − y 0 ) + z ′ ( t 0 ) ( z − z 0 ) = 0 x'(t_0)(x-x_0)+y'(t_0)(y-y_0)+z'(t_0)(z-z_0)=0 x(t0)(xx0)+y(t0)(yy0)+z(t0)(zz0)=0

(2)用方程组给出

{ F ( x , y , z ) = 0 G ( x , y , z ) = 0 \begin{cases}F(x,y,z)=0\\G(x,y,z)=0 \end{cases} {F(x,y,z)=0G(x,y,z)=0

∂ ( F , G ) ∂ ( y , z ) ≠ 0 ⇒ { x = x , y = y ( x ) , z = z ( x ) , \frac{\partial (F,G)}{\partial(y,z)} \neq 0\quad \Rightarrow\quad \begin{cases}x=x,\\y=y(x),\\z=z(x), \end{cases} (y,z)(F,G)=0 x=x,y=y(x),z=z(x), 其中 ∂ ( F , G ) ∂ ( y , z ) = ∣ ∂ F ∂ y ∂ F ∂ z ∂ G ∂ y ∂ G ∂ z ∣ \frac{\partial (F,G)}{\partial(y,z)} =\left| \begin{array}{ccc} \frac{\partial F}{\partial y} & \frac{\partial F}{\partial z} \\ \frac{\partial G}{\partial y} &\frac{\partial G}{\partial z} \end{array} \right| (y,z)(F,G)= yFyGzFzG

P ( x 0 , y 0 , z 0 ) P(x_0,y_0,z_0) P(x0,y0,z0)切向量 τ = ( 1 , y ′ ( x 0 ) , z ′ ( x 0 ) ) \boldsymbol{\tau} = (1,y'(x_0),z'(x_0)) τ=(1,y(x0),z(x0))

切线方程: x − x 0 1 = y − y 0 y ′ ( x 0 ) = z − z 0 z ′ ( x 0 ) \frac{x-x_0}{1} = \frac{y-y_0}{y'(x_0)} = \frac{z-z_0}{z'(x_0)} 1xx0=y(x0)yy0=z(x0)zz0

法平面方程: ( x − x 0 ) + y ′ ( x 0 ) ( y − y 0 ) + z ′ ( x 0 ) ( z − z 0 ) = 0 (x-x_0)+y'(x_0)(y-y_0)+z'(x_0)(z-z_0)=0 (xx0)+y(x0)(yy0)+z(x0)(zz0)=0

空间曲面与法线

(1)隐式方程

F ( x , y , z ) = 0 F(x,y,z) = 0 F(x,y,z)=0

在点 P ( x 0 , y 0 , z 0 ) P(x_0,y_0,z_0) P(x0,y0,z0)法向量 n = ( F x ′ ∣ P 0 , F y ′ ∣ P 0 , F z ′ ∣ P 0 ) \boldsymbol{n} = \left(F'_{x}|_{P_0}, F'_{y}|_{P_0}, F'_{z}|_{P_0} \right) n=(FxP0,FyP0,FzP0)

切平面方程: F x ′ ∣ P 0 ⋅ ( x − x 0 ) + F y ′ ∣ P 0 ⋅ ( y − y 0 ) + F z ′ ∣ P 0 ⋅ ( z − z 0 ) = 0 F'_{x}|_{P_0}\cdot(x-x_0) + F'_{y}|_{P_0}\cdot (y-y_0) + F'_{z}|_{P_0} \cdot (z-z_0) = 0 FxP0(xx0)+FyP0(yy0)+FzP0(zz0)=0

法线方程: x − x 0 F x ′ ∣ P 0 = y − y 0 F y ′ ∣ P 0 = z − z 0 F z ′ ∣ P 0 \frac{x-x_0}{F'_{x}|_{P_0}} = \frac{y-y_0}{F'_{y}|_{P_0}} = \frac{z-z_0}{F'_{z}|_{P_0}} FxP0xx0=FyP0yy0=FzP0zz0

(2)显式函数

z = f ( x , y ) ⇒ F ( x , y , z ) = f ( x , y ) − z = 0 z = f(x,y)\quad \Rightarrow \quad F(x,y,z) = f(x,y)-z = 0 z=f(x,y)F(x,y,z)=f(x,y)z=0

在点 P ( x 0 , y 0 , z 0 ) P(x_0,y_0,z_0) P(x0,y0,z0)法向量 n = ( f x ′ ( x 0 , y 0 ) , f y ′ ( x 0 , y 0 ) , − 1 ) \boldsymbol{n} = \left(f'_{x}(x_0,y_0), f'_{y}(x_0,y_0), -1 \right) n=(fx(x0,y0),fy(x0,y0),1)

切平面方程: f x ′ ( x 0 , y 0 ) ⋅ ( x − x 0 ) + f y ′ ( x 0 , y 0 ) ⋅ ( y − y 0 ) − ( z − z 0 ) = 0 f'_{x}(x_0,y_0)\cdot(x-x_0) + f'_{y}(x_0,y_0)\cdot (y-y_0) - (z-z_0) = 0 fx(x0,y0)(xx0)+fy(x0,y0)(yy0)(zz0)=0

法线方程: x − x 0 f x ′ ( x 0 , y 0 ) = y − y 0 f y ′ ( x 0 , y 0 ) = z − z 0 − 1 \frac{x-x_0}{f'_{x}(x_0,y_0)} = \frac{y-y_0}{f'_{y}(x_0,y_0)} = \frac{z-z_0}{-1} fx(x0,y0)xx0=fy(x0,y0)yy0=1zz0

(3)参数方程

{ x = x ( u , v ) y = y ( u , v ) z = z ( u , v ) \begin{cases} x = x(u,v)\\y = y(u,v)\\z=z(u,v) \end{cases} x=x(u,v)y=y(u,v)z=z(u,v)

u = u 0 , v = v 0 u = u_0,v=v_0 u=u0,v=v0时,有点 P ( x 0 , y 0 , z 0 ) P(x_0,y_0,z_0) P(x0,y0,z0)

固定 v = v 0 ⇒ u 在 P v=v_0 \Rightarrow u在P v=v0uP切向量 τ 1 = ( x u ′ , y u ′ , z u ′ ) ∣ P 0 \boldsymbol{\tau_1} = (x'_u, y'_u, z'_u)|_{P_0} τ1=(xu,yu,zu)P0

固定 u = u 0 ⇒ v 在 P u=u_0 \Rightarrow v在P u=u0vP切向量 τ 2 = ( x v ′ , y v ′ , z v ′ ) ∣ P 0 \boldsymbol{\tau_2} = (x'_v, y'_v, z'_v)|_{P_0} τ2=(xv,yv,zv)P0

曲面的法向量垂直于 τ 1 、 τ 2 ⇒ n = τ 1 × τ 2 = ∣ i j k x u ′ y u ′ z u ′ x v ′ y v ′ z v ′ ∣ P 0 = ( A , B , C ) \boldsymbol{\tau_1}、\boldsymbol{\tau_2} \Rightarrow \boldsymbol{n} = \boldsymbol{\tau_1} \times \boldsymbol{\tau_2} = \left| \begin{array}{cccc} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ x'_u& y'_u& z'_u \\ x'_v& y'_v& z'_v \end{array} \right|_{P_0} = (A,B,C) τ1τ2n=τ1×τ2= ixuxvjyuyvkzuzv P0=(A,B,C)

切平面方程: A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x-x_0) + B(y-y_0) + C (z-z_0) = 0 A(xx0)+B(yy0)+C(zz0)=0

法线方程: x − x 0 A = y − y 0 B = z − z 0 C \frac{x-x_0}{A} = \frac{y-y_0}{B} = \frac{z-z_0}{C} Axx0=Byy0=Czz0

总结空间曲面与空间曲线

  • 抓住曲面的法向量与曲线的切向量

曲线的投影

Γ = { F ( x , y , z ) = 0 G ( x , y , z ) = 0 \Gamma = \begin{cases}F(x,y,z) = 0\\G(x,y,z) = 0 \end{cases} Γ={F(x,y,z)=0G(x,y,z)=0消去z即可得到在xOy的投影 { ϕ ( x , y ) = 0 z = 0 \begin{cases}\phi(x,y) = 0\\ z= 0 \end{cases} {ϕ(x,y)=0z=0

曲线的旋转(P358)

1、绕坐标轴旋转

绕谁转,谁不动,另一个变成其和第三个的平方和开根号: 另 2 + 三 2 \sqrt{另^2 + 三^2} 2+2

具体来说:$$$$

2、绕一般直线旋转

曲线: Γ = { F ( x , y , z ) = 0 G ( x , y , z ) = 0 \Gamma = \begin{cases}F(x,y,z) = 0\\G(x,y,z) = 0 \end{cases} Γ={F(x,y,z)=0G(x,y,z)=0,直线: x − x 0 m = y − y 0 n = z − z 0 p \frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p} mxx0=nyy0=pzz0

向量的运算

  • 三向量共面: [ a b c ] = ( a × b ) ⋅ c = ⇔ ∣ a x a y a z b x b y b z c x c y c z ∣ = 0 [\boldsymbol{abc}] = (\boldsymbol{a}\times\boldsymbol{b})\cdot\boldsymbol{c} = \Leftrightarrow \left| \begin{array}{ccc} a_x & a_y &a_z\\b_x&b_y&b_z\\ c_x&c_y&c_z \end{array} \right| = 0 [abc]=(a×b)c=⇔ axbxcxaybycyazbzcz =0

直线与平面关系(P359)

平面束方程

 假设平面1、2方程: { A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 , 其中 A 1 , B 1 , C 1 与 A 2 , B 2 , C 2 \begin{cases} A_1x+B_1y+C_1z+D_1=0 \\ A_2x+B_2y+C_2z+D_2=0 \end{cases},\quad 其中A_1,B_1,C_1与A_2,B_2,C_2 {A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0,其中A1,B1,C1A2,B2,C2不成比例。设L为两个平面的交线,则过该交线的平面束方程设为: μ ( A 1 x + B 1 y + C 1 z + D 1 ) + λ ( A 2 x + B 2 y + C 2 z + D 2 ) = 0 , μ , λ \mu (A_1x+B_1y+C_1z+D_1) + \lambda(A_2x+B_2y+C_2z+D_2) = 0,\quad \mu,\lambda μ(A1x+B1y+C1z+D1)+λ(A2x+B2y+C2z+D2)=0,μ,λ为参数。

 除此之外,对于具体题目,如果说过该交线的平面,但是不是平面1(2)的方程,那么就将上述的 μ \mu μ λ \lambda λ)设置为1。

点到平面的距离

P ( x 0 , y 0 , z 0 ) P(x_0,y_0,z_0) P(x0,y0,z0)到平面 A x + B y + C z + D = 0 Ax+By+Cz+D = 0 Ax+By+Cz+D=0的距离 d = ∣ A x 0 + B y 0 + C z 0 + D ∣ A 2 + B 2 + C 2 d = \frac{\left|Ax_0+By_0+Cz_0+D\right|}{\sqrt{A^2+B^2+C^2}} d=A2+B2+C2 Ax0+By0+Cz0+D

直线、平面之间的关系

 抓住直线的切向量与平面的法向量,那么问题就迎刃而解了。

场论初步

方向导数(值)

 设函数 u = u ( x , y , z ) u=u(x,y,z) u=u(x,y,z)在点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0)的领域内有定义,那么 u ( x , y , z ) u(x,y,z) u(x,y,z)在点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0)的方向导数的定义应该是:

∂ u ∂ l ∣ P 0 = lim ⁡ t → 0 + u ( P ) − u ( P 0 ) t = lim ⁡ t → 0 + u x ′ ( P 0 ) Δ x + u y ′ ( P 0 ) Δ y + u ′ ( P 0 ) Δ z ( Δ x ) 2 + ( Δ y ) 2 + ( Δ z ) 2 = u x ′ ( P 0 ) cos ⁡ α + u y ′ ( P 0 ) cos ⁡ β + u ′ ( P 0 ) cos ⁡ γ = ( u x ′ ( P 0 ) , u y ′ ( P 0 ) , u ′ ( P 0 ) ) ⋅ ( cos ⁡ α , cos ⁡ β , cos ⁡ γ ) \frac{\partial u}{\partial \boldsymbol{l}}|_{P_0} = \lim\limits_{t\to 0^+}\frac{u(P)-u(P_0)}{t}= \lim\limits_{t\to 0^+}\frac{u'_x(P_0)\Delta x + u'_y(P_0)\Delta y+u'(P_0)\Delta z }{\sqrt{(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2}} \\= u'_x(P_0)\cos \alpha + u'_y(P_0)\cos\beta +u'(P_0)\cos\gamma \\= (u'_x(P_0), u'_y(P_0),u'(P_0))\cdot (\cos \alpha,\cos\beta ,\cos\gamma ) luP0=t0+limtu(P)u(P0)=t0+lim(Δx)2+(Δy)2+(Δz)2 ux(P0)Δx+uy(P0)Δy+u(P0)Δz=ux(P0)cosα+uy(P0)cosβ+u(P0)cosγ=(ux(P0),uy(P0),u(P0))(cosα,cosβ,cosγ)

其中, t = ( Δ x ) 2 + ( Δ y ) 2 + ( Δ z ) 2 , cos ⁡ α , cos ⁡ β , cos ⁡ γ t = \sqrt{(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2}, \quad \cos\alpha,\cos\beta,\cos\gamma t=(Δx)2+(Δy)2+(Δz)2 ,cosα,cosβ,cosγ为方向余弦。

梯度(向量)

g r a d u ∣ p 0 = ( u x ′ ( P 0 ) , u y ′ ( P 0 ) , u z ′ ( P 0 ) ) \boldsymbol{grad} \quad u|_{p_0} = (u'_x(P_0) , u'_y(P_0), u'_z(P_0)) gradup0=(ux(P0),uy(P0),uz(P0))

当梯度与方向 l l l同向时,方向导数最大,方向导数为梯度的模: ∣ g r a d u ∣ p 0 ∣ = [ u x ′ ( P 0 ) ] 2 + [ u y ′ ( P 0 ) ] 2 + [ u z ′ ( P 0 ) ] 2 \left| \boldsymbol{grad} \quad u|_{p_0} \right| = \sqrt{[u'_x(P_0)]^2 + [u'_y(P_0)]^2+ [u'_z(P_0)]^2} gradup0=[ux(P0)]2+[uy(P0)]2+[uz(P0)]2

散度(值)

设向量场 A ( x , y , z ) = P ( x , y , z ) i + Q ( x , y , z ) j + R ( x , y , z ) k \boldsymbol{A}(x,y,z) = P(x,y,z)\boldsymbol{i}+Q(x,y,z)\boldsymbol{j}+R(x,y,z)\boldsymbol{k} A(x,y,z)=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k

散度定义为: d i v A = ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z div \boldsymbol{A} = \frac{\partial P}{\partial x}+ \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} divA=xP+yQ+zR,散度为0的场叫做无源场

旋度(向量)

设向量场 A ( x , y , z ) = P ( x , y , z ) i + Q ( x , y , z ) j + R ( x , y , z ) k \boldsymbol{A}(x,y,z) = P(x,y,z)\boldsymbol{i}+Q(x,y,z)\boldsymbol{j}+R(x,y,z)\boldsymbol{k} A(x,y,z)=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k

旋度为: r o t A = ∣ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ \boldsymbol{rot\quad A} = \left |\begin{array}{ccc} \boldsymbol{i} & \boldsymbol{j} &\boldsymbol{k} \\ \frac{\partial}{\partial x} &\frac{\partial}{\partial y} &\frac{\partial}{\partial z} \\ P &Q &R \\ \end{array}\right| rotA= ixPjyQkzR ,若旋度为0向量的场叫做无旋场

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值