1.最小路径和
给定一个包含非负整数的
m x n
网格grid
,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。说明:每次只能向下或者向右移动一步。
class Solution {
public int minPathSum(int[][] grid) {
if (grid == null || grid.length == 0 || grid[0].length == 0) {
return 0;
}
int rows = grid.length, columns = grid[0].length;
int[][] dp = new int[rows][columns];
dp[0][0] = grid[0][0];
for (int i = 1; i < rows; i++) {
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
for (int j = 1; j < columns; j++) {
dp[0][j] = dp[0][j - 1] + grid[0][j];
}
for (int i = 1; i < rows; i++) {
for (int j = 1; j < columns; j++) {
dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
}
}
return dp[rows - 1][columns - 1];
}
}
2.加一
class Solution {
public int[] plusOne(int[] digits) {
int n = digits.length;
for (int i = n - 1; i >= 0; i--) {
if (digits[i] != 9) {
digits[i]++;
for (int j = i + 1; j < n; j++) {
digits[j] = 0;
}
return digits;
}
}
// digits 中所有的元素均为 9
int[] ans = new int[n + 1];
ans[0] = 1;
return ans;
}
}
3.二进制求和
方法一:转化为十进制数
先将 aaa 和 bbb 转化成十进制数,求和后再转化为二进制数。利用 Python 和 Java 自带的高精度运算,我们可以很简单地写出这个程序:
class Solution {
public String addBinary(String a, String b) {
return Integer.toBinaryString(
Integer.parseInt(a, 2) + Integer.parseInt(b, 2)
);
}
}
方法二:模拟
class Solution {
public String addBinary(String a, String b) {
StringBuffer ans = new StringBuffer();
int n = Math.max(a.length(), b.length()), carry = 0;
for (int i = 0; i < n; ++i) {
carry += i < a.length() ? (a.charAt(a.length() - 1 - i) - '0') : 0;
carry += i < b.length() ? (b.charAt(b.length() - 1 - i) - '0') : 0;
ans.append((char) (carry % 2 + '0'));
carry /= 2;
}
if (carry > 0) {
ans.append('1');
}
ans.reverse();
return ans.toString();
}
}
4.x的平方根
方法一:袖珍计算器算法
class Solution {
public int mySqrt(int x) {
if (x == 0) {
return 0;
}
int ans = (int) Math.exp(0.5 * Math.log(x));
return (long) (ans + 1) * (ans + 1) <= x ? ans + 1 : ans;
}
}
方法二:二分查找
class Solution {
public int mySqrt(int x) {
int l = 0, r = x, ans = -1;
while (l <= r) {
int mid = l + (r - l) / 2;
if ((long) mid * mid <= x) {
ans = mid;
l = mid + 1;
} else {
r = mid - 1;
}
}
return ans;
}
}
5.爬楼梯
方法一:动态规划
class Solution {
public int climbStairs(int n) {
int p = 0, q = 0, r = 1;
for (int i = 1; i <= n; ++i) {
p = q;
q = r;
r = p + q;
}
return r;
}
}