DAY12-力扣刷题

1.简化路径

71. 简化路径 - 力扣(LeetCode)

题目描述

 Java正则中为什么反斜线"\"需要用“\\\\”表示,原因详解。 - 宇的季节 - 博客园 (cnblogs.com)

方法一:栈 

class Solution {
    public String simplifyPath(String path) {
        String[] names = path.split("/");
        Deque<String> stack = new ArrayDeque<String>();
        for (String name : names) {
            if ("..".equals(name)) {
                if (!stack.isEmpty()) {
                    stack.pollLast();
                }
            } else if (name.length() > 0 && !".".equals(name)) {
                stack.offerLast(name);
            }
        }
        StringBuffer ans = new StringBuffer();
        if (stack.isEmpty()) {
            ans.append('/');
        } else {
            while (!stack.isEmpty()) {
                ans.append('/');
                ans.append(stack.pollFirst());
            }
        }
        return ans.toString();
    }
}

2.编辑距离

72. 编辑距离 - 力扣(LeetCode)

给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数  。

你可以对一个单词进行如下三种操作:

  • 插入一个字符
  • 删除一个字符
  • 替换一个字符

方法一:动态规划 

class Solution {
    public int minDistance(String word1, String word2) {
        int n = word1.length();
        int m = word2.length();

        // 有一个字符串为空串
        if (n * m == 0) {
            return n + m;
        }

        // DP 数组
        int[][] D = new int[n + 1][m + 1];

        // 边界状态初始化
        for (int i = 0; i < n + 1; i++) {
            D[i][0] = i;
        }
        for (int j = 0; j < m + 1; j++) {
            D[0][j] = j;
        }

        // 计算所有 DP 值
        for (int i = 1; i < n + 1; i++) {
            for (int j = 1; j < m + 1; j++) {
                int left = D[i - 1][j] + 1;
                int down = D[i][j - 1] + 1;
                int left_down = D[i - 1][j - 1];
                if (word1.charAt(i - 1) != word2.charAt(j - 1)) {
                    left_down += 1;
                }
                D[i][j] = Math.min(left, Math.min(down, left_down));
            }
        }
        return D[n][m];
    }
}

3.矩阵置零

73. 矩阵置零 - 力扣(LeetCode)

方法一:使用标记数组

class Solution {
    public void setZeroes(int[][] matrix) {
        int m=matrix.length,n=matrix[0].length;
        boolean[] row=new boolean[m];
        boolean[] col=new boolean[n];
        for(int i=0;i<m;i++){
            for(int j=0;j<n;j++){
                if(matrix[i][j]==0){
                    row[i]=col[j]=true;
                }
            }
        }
        for(int i=0;i<m;i++){
            for(int j=0;j<n;j++){
                if(row[i]||col[j]){
                    matrix[i][j]=0;
                }
            }
        }
    }
}

4.搜索二维数组

给你一个满足下述两条属性的 m x n 整数矩阵:

  • 每行中的整数从左到右按非严格递增顺序排列。
  • 每行的第一个整数大于前一行的最后一个整数。

给你一个整数 target ,如果 target 在矩阵中,返回 true ;否则,返回 false 。

看到非严格递增顺序排列就想到用二分法

方法一:两次二分查找

由于每行的第一个元素大于前一行的最后一个元素,且每行元素是升序的,所以每行的第一个元素大于前一行的第一个元素,因此矩阵第一列的元素是升序的。

【所以这就意味着整个数组都是从小到大排序的】

【我们从第一列找小于目标值的数】

我们可以对矩阵的第一列的元素二分查找,找到最后一个不大于目标值的元素,然后在该元素所在行中二分查找目标值是否存在。

class Solution {
    public boolean searchMatrix(int[][] matrix, int target) {
        int rowIndex = binarySearchFirstColumn(matrix, target);
        if (rowIndex < 0) {
            return false;
        }
        return binarySearchRow(matrix[rowIndex], target);
    }

    public int binarySearchFirstColumn(int[][] matrix, int target) {
        int low = -1, high = matrix.length - 1;
        while (low < high) {
            int mid = (high - low + 1) / 2 + low;
            if (matrix[mid][0] <= target) {
                low = mid;
            } else {
                high = mid - 1;
            }
        }
        return low;
    }

    public boolean binarySearchRow(int[] row, int target) {
        int low = 0, high = row.length - 1;
        while (low <= high) {
            int mid = (high - low) / 2 + low;
            if (row[mid] == target) {
                return true;
            } else if (row[mid] > target) {
                high = mid - 1;
            } else {
                low = mid + 1;
            }
        }
        return false;
    }
}

方法二:一次二分查找 

思路

若将矩阵每一行拼接在上一行的末尾,则会得到一个升序数组,我们可以在该数组上二分找到目标元素。

代码实现时,可以二分升序数组的下标,将其映射到原矩阵的行和列上。

 5.颜色分类

给定一个包含红色、白色和蓝色、共 n 个元素的数组 nums ,原地对它们进行排序,使得相同颜色的元素相邻,并按照红色、白色、蓝色顺序排列。

我们使用整数 0、 1 和 2 分别表示红色、白色和蓝色。

必须在不使用库内置的 sort 函数的情况下解决这个问题。

 

class Solution {
    public void sortColors(int[] nums) {
        int n = nums.length;
        int ptr = 0;
        for (int i = 0; i < n; ++i) {
            if (nums[i] == 0) {
                int temp = nums[i];
                nums[i] = nums[ptr];
                nums[ptr] = temp;
                ++ptr;
            }
        }
        for (int i = ptr; i < n; ++i) {
            if (nums[i] == 1) {
                int temp = nums[i];
                nums[i] = nums[ptr];
                nums[ptr] = temp;
                ++ptr;
            }
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值