线性代数教程 矩阵

CSDN 的文档显示有一些问题,一些数学符号显示不正确,想看 word文档 的可以移步到 github : https://github.com/IceEmblem/-/tree/master/%E5%AD%A6%E4%B9%A0%E8%B5%84%E6%96%99/%E5%B9%B3%E5%8F%B0%E6%97%A0%E5%85%B3/%E7%BA%BF%E6%80%A7%E4%BB%A3%E6%95%B0

矩阵

如下是一个m x n的矩阵

行列式的两边是 | ,而矩阵是 [ ]

矩阵我们可以记为Amxn 或者 (aij)mxn

一般情况下,我们用黑体字母A B C 代表矩阵,如 Amxn ,表示m x n行矩阵

如果 Amxn与Bmxn 各个元素都相等,那我们称为 A = B

 

矩阵运算

矩阵加法

如果矩阵的行列数相等,则矩阵可以相加

例,某种物资从3个产地运往4个销地的数量,A B分别是2次运输的数量,A + B则是2次运输的总量,即A对应的元素与B对应的元素相加

矩阵与数的乘法

使用上面的示例,每个货物的价格为2,则A的价格为

即kA = k(aij)mxn = (kaij)mxn

 

矩阵间的乘法

如下矩阵,A表示1 2 3 4工厂生产甲乙丙3种产品的数据,B表示甲乙丙3种产品的单位价格和单元利润,C表示1 2 3 4 工厂的总收入和总利润

工厂1的总收入c11 = a11*b11 + a12*b21 + a13*b31

工厂1的总利润c12 = a11*b12 + a12*b22 + a13*b32

同理工厂2 3 4

我们可以发现,我们将A中第m行的元素和B中第n列的对应的元素相乘并相加,即可得到cmn的值,我们将这种技术方式称为A矩阵乘以B矩阵,记为Amk*Bkn = Cmn

Amk*Bkn的前提是A的列数k必须与B的行数k相同

Amk*Bkn可以得到一个m x n的矩阵

 

矩阵可交换

AB 不一定等于 BA,有可能BA还不一定能相乘

如果 AB = BA,那么我们称 矩阵A与矩阵B可交换

我们将 AB 称为 A左乘 B,将 BA 称为 A右乘B

 

不满足消去律

矩阵没有除法,因此我们不能在等式2边同除以矩阵来消去矩阵

即AC = BC,但 A 不一定等于 C

 

只有一行或一列的矩阵

我们使用小写黑体abxy等表示只有一行或一列的矩阵

如下方程式

a11x1 + a12x2 + ... +a1nxn = b1

a21x1 + a22x2 + ... +a2nxn = b2

...    ...   ...   ....

am1x1 + am2x2 + ... +amnxn = bm

我们可以使用如下矩阵表示

如上方程式表示为Ax = b

 

矩阵的性质

(AB)C = A(BC)

(A+B)C = AC + BC

C(A+B) = CA + CB

K(AB) = (kA)B = A(kB)

 

矩阵转置

将矩阵A的元素axy的位置 xy 交换,可得到转置后的矩阵称为 AT

转置矩阵的性质

(AT)T = A

(A+B)T = AT + BT

(kA)T = kAT

(AB)T = BTAT

 

方阵的幂

如果A的行数和列式相等,那么A可称为方阵,方阵可自相乘

Ak = A * A * ... A

 

方阵的行列式

我们将方阵A的元素构成的行列式记住 |A|

方阵行列式的性质

|kA| = kn|A|

|AB| = |A| * |B|

|AB| = |BA|

 

几种特殊的矩阵

对角矩阵

如果方阵的元素除了主对角线外,其余元素均为0,则矩阵为对角矩阵

Aij = 0 , i ≠j (i, j = 1, 2 .. n)

对于对角矩阵A,B,有kA,A+B,A x B 仍为同阶对角矩阵

 

数量矩阵

如果对角矩阵的 Aij 均等于某个数a,则称为数量矩阵

对于数量矩阵A,普通矩阵B,AB = aB

 

单位矩阵

如果数量矩阵的a = 1,则A为单位矩阵

对于n阶单元矩阵,记为In

对于单元矩阵有

ImAmxn = Amxn

AmxnIn = Amxn

 

三角矩阵

如果矩阵的左下角或右上角全为0,则称矩阵为三角矩阵

对于三角矩阵A,B,有kA,A+B,A x B 仍为同阶三角矩阵

 

对称矩阵

对于矩阵 (aij)mxn ,如果 aij = aji ,则矩阵为对称矩阵

 

分块矩阵

如下矩阵A,我们可以将矩阵分为4个小矩阵

于是我们的矩阵A可以使用如下方式表示

分块矩阵中的矩阵可以当作元素来进行除了

 

逆矩阵

可逆矩阵

如果存在 AB = BA = I,则称 A 为可逆矩阵,称 B 为 A 的逆矩阵,B对于A是唯一的

如下两个矩阵互为可逆矩阵

 

奇异与分奇异

如果方阵A的行列式 |A| 不等于0,则称 A 为非奇异的,否则称 A 为奇异的

 

伴随矩阵

由方阵A各个元素对应的代数余子式组成的方阵称为A的伴随矩阵,称为 A*

注意它的排序,A12是第1行第2个元素的代数余子式,但它排在第2行第1列

 

定理:n阶矩阵A可逆充分必要条件是A分奇异,且当A可逆是 A-1 = (1/|A|)A*

意思是说,如果 |A| 不等于 0 ,则A可逆,其逆矩阵A-1 = (1/|A|)A*

证:证什么证,反正你们也记不住...

经过2小时反复思考,我觉得还是证一下吧

等式两边乘以A,得到 AA-1 = (1/|A|)A*A = I

而 A*A 的结果是

 

逆矩阵的性质

  1. 如果A可逆,则kA也可逆,因为 (kA)((1/k)A)-1 = I
  2. 2个可逆矩阵的乘积仍为可逆矩阵,且B-1A-1 = (BA)-1
  3. 如果逆矩阵A可逆,则其转置逆矩阵AT也可逆,其 (AT)-1 = (A-1)T

因为 AT(A-1)T = (A-1A)T = IT = I

  1. 若A可逆,则 |A-1| = |A|-1 (就是 1/|A|)

因为 |AA-1| = |I| = |A| |A-1| = 1

 

矩阵的初等变换

初等变换

对矩阵进行如下3中操作,称为矩阵的初等变换

  1. 交换矩阵的2行(或列)
  2. 矩阵的某一行(或列)乘以非0数k
  3. 矩阵的某一行(或列)加上零一行(或列)的l倍

 

初等矩阵

对矩阵I(注意,是I)施以1次初等变换得到的矩阵,称为初等矩阵

 

定理:对Amxn的行做一次初等变换等于用同种m阶初等矩阵左乘A,对Amxn的列施以一次初等变换等于用同种n阶初等矩阵右乘A

如下,矩阵A交换第1行和第2行得到矩阵B,其同种初等矩阵为矩阵C

则 CA = B

 

定理:任意矩阵 Amxn 经过若干次初等变换后,均可得到如下类型的矩阵 D

推论:如果A为n阶可逆矩阵,则A的D=In(注:这里的D是上面定理的矩阵)

意思是如果A可逆,那么我们可以通过若干次初等变换将A变为In

 

初等变换求逆矩阵

如下,如果A可逆,则A经过若干次初等变换可为I,假设我们只对行进行初等变换,Gj表示对应的初等矩阵,则有

I = G1G2G3...GkA

两边乘以A-1,A-1 = G1G2G3...GkI

这也就是说A-1是由I经过若干次相同的初等变换变化而来

如下示例

当进行了多次行的初等变换之后,A变成了I,而I也变成而来A-1

 

如果A经过初等变换变为I的过程中,某一行全为0,则无法进行之后的初等变换,即A不可逆

 

矩阵的秩

k阶子式

从A中选择k行k列,将将这些行列相加处的元素排成行列式,称为k阶子式,当k阶子式不等于0是且k不能再大了,则k为最高阶数

如下矩阵,其最高阶数为2,因为其3阶以上的子式全为0

 

矩阵的秩

我们将矩阵的最高阶数称为矩阵的秩,记作r(A)

对应O,O的美一个元素均为0,则r(O) = 0

如果n阶矩阵A的r(A) = n,则称为满秩矩阵

 

定理:矩阵经过初等变换后,其秩不会发生改变

通过这个定理,我们可以将矩阵通过初等变换变为梯形矩阵,来求矩阵的秩

如下

当我们选择的行数超过k时,就会出现k某一行全为0,此时k阶子式为0,所以矩阵的秩为k

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值