- 博客(15)
- 收藏
- 关注
原创 介绍vision transform
经过多层Transformer Encoder处理后,通常会取序列的第一个token(称为class token或[CLS] token)作为整个序列的表示,这个表示会被送入最终的分类层,用于输出图像的类别预测。总之,Vision Transformer是一种强大的模型,它为解决计算机视觉问题提供了新的视角,尤其是对于那些需要捕捉全局信息的任务来说,ViT展现出了其独特的优势。处理过的patches及其位置编码会组成一个序列,然后被送入Transformer的Encoder层。
2024-11-14 14:18:47 742
原创 Learning to Obstruct Few-Shot Image Classification over Restricted Classes学习在受限类别的图像分类中阻塞少量样本
这篇论文探讨了如何通过元学习的方式,在预训练模型中引入阻碍因素,使得在某些下游任务上进行微调变得更加困难。具体来说,该方法针对小样本分类问题进行了实验,并成功地将四种不同的小样本分类方法在三个数据集上进行了阻断,包括ImageNet和CIFAR100图像分类以及CelebA属性分类。该方法的成功表明,即使是在开放源代码的预训练模型中,也可以通过元学习的方式增加安全性,防止恶意行为的发生。
2024-11-14 08:50:36 183
原创 FlipDA:用于少样本学习的有效鲁棒数据增强
在文本数据增强领域中,在困难的任务(即小样本自然语言理解)具有超过 10 亿个参数的强大基线(即预训练模型)只能带来微小的改进,有时甚至会大大降低性能。为了解决这一挑战,我们提出了一种新颖的数据增强方法FlipDA,它同时使用生成模型和分类器来生成标签翻转数据。FlipDA 的核心思想是发现生成标签翻转数据比生成标签保留数据对性能更为重要。
2024-11-14 08:26:59 86
原创 训练神经网络模型的作用、步骤、代码示例
同时,数据加载器通常还支持数据预处理(如归一化、数据增强等)和多线程加载数据,以加快训练速度。不同的优化器(例如SGD, Adam等)可能具有不同的更新策略,但它们共同的目标都是寻找使损失函数最小化的模型参数集合。综上所述,这一系列步骤构成了神经网络训练的基础框架,使得模型可以从数据中学习,并逐步改进其性能。通过反复执行上述过程,模型能够在训练数据上达到更好的拟合效果,最终实现对新数据的有效预测。目的: 损失函数量化了模型预测的好坏程度,是指导模型学习的关键指标。
2024-11-10 10:19:27 66
原创 原型网络,resnet,特征度量方法
具体来说,对于给定的一组支持集(support set),其中包含了一些已知类别的少量样本,原型网络会先计算每个类别的原型。然后,对于一个新的查询样本(query sample),模型会计算它与各个类别原型之间的距离,并将该样本分配给最近的原型所代表的类别。即,使用 ResNet 提取输入样本的特征,然后根据这些特征计算每个类别的原型,最后通过比较查询样本与各原型的距离来进行分类。即使面对从未见过的数据,只要这些数据与训练时遇到的数据具有相似的特征分布,模型也能做出合理的预测。ResNet(残差网络)
2024-11-09 08:37:00 308
原创 DBDC-SSL: Deep Brownian Distance Covariance With Self-Supervised Learning for Few-Shot Image Classif
由于视觉识别模型在有限训练数据下实现泛化存在固有的困难,因此基于少量样本的图像分类仍然是一个持久的挑战。现有的方法主要。
2024-09-19 22:51:45 425
原创 pytorch 线性模型学习
Adam (Adaptive Moment Estimation): Adam 是一种自适应学习率的方法,它结合了梯度下降的思想和RMSProp的优点,通过保持每个参数的动量和二阶矩估计来动态调整学习率。Adagrad: Adagrad 通过为每个参数维护一个累积平方梯度的和来适应性地调整学习率,这样在频繁出现的特征上学习率会降低,在稀疏数据或特征出现次数较少的情况下表现较好。,有数据集和对应的标签,线性预测随机(random guess)值权重W,评估与真实值的差异,评估模型即损失loss,
2024-08-03 15:58:43 456
原创 Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification 代码笔记
类则是一个元学习模板,提供了抽象方法来允许在子类中实现不同的前向传播和损失计算方式,支持元学习算法的灵活应用。类用于基线训练模型,初始化特征提取器和分类器,并定义了损失函数和训练过程。
2024-07-31 08:54:47 149
原创 模型提取特征步骤 笔记
池化层(Pooling Layers):在特征图上进行,降低空间尺寸,但保留重要特征信息。为了减少计算量、控制过拟合,并保持重要特征。综上所述,通过这一系列精心设计的层和训练过程,CNN模型能够自动提取图像中的关键特征,并基于这些特征对图像进行分类。以上模型和技术各有侧重,选择时需考虑任务需求、计算资源以及实时性要求等因素。卷积层(Convolutional Layers):第一个关键组件。
2024-07-22 10:22:44 1767
原创 Revisiting Prototypical Network for Cross Domain Few-Shot Learning LDP-Net 代码流程(3)
LDP-net 由两个分支网络组成。3 特征提取: 对支持集和查询集进行特征提取,首先通过主模型(model)提取224x224尺寸图像的特征,然后对这些特征进行处理,包括计算支持集特征的平均值,以代表每个类别的特征向量。总之,此函数实现了对模型的一系列训练步骤,包括数据预处理、特征提取、损失计算、反向传播及优化更新,同时融入了特定的损失函数来增强模型的泛化能力,尤其是在少样本学习场景下。计算查询集中的基础预测(锚点预测)与正确标签之间的交叉熵损失,评估模型在未经过额外数据增强情况下的分类性能。
2024-07-18 12:51:07 1399
原创 Revisiting Prototypical Network for Cross Domain Few-Shot Learning 代码运行结果记录
(LDP-net)本文进行了三组消融实验,分别验证了自图像蒸馏、跨图像蒸馏和跨任务蒸馏这三个组成部分的作用。具体来说:第一组消融实验只保留了自图像蒸馏部分,即只训练模型预测全局图像类别,不考虑局部特征。结果表明,这种模型在一些域上的性能较差,说明局部特征对于提高模型泛化能力是必要的。第二组消融实验只保留了跨图像蒸馏部分,即只训练模型预测局部特征类别,不考虑全局图像类别。结果表明,这种模型在所有域上的性能都比较差,说明全局图像类别信息对于建立稳健的特征表示也是必要的。
2024-07-11 15:49:47 316
原创 Revisiting Prototypical Network for Cross Domain Few-Shot Learning 学习笔记
本文介绍了一种新的基于深度神经网络的跨域少数样本分类方法——(LDP-net)。传统的原型网络在处理少数样本分类任务时表现良好,但在新领域中应用时性能下降严重。作者认为这是由于神经网络的简单性偏差陷阱导致的,即网络倾向于关注一些偏见的快捷特征,而忽略了更具有语义意义的特征。为了解决这个问题,作者提出了LDP-net,通过建立一个两分支网络对查询图像和其随机局部裁剪进行分类,并利用强制这两个分支保持类归属一致性,从而利用跨领域的语义信息提高模型泛化能力。
2024-07-04 16:08:48 1463
原创 少样本采用的深度学习方法 学习笔记
几个概念想象一下你是一位擅长快速适应新游戏的玩家。每当你拿到一个新的游戏,即使之前没玩过,你也能根据以往的游戏经验,迅速掌握玩法并表现出色。这就是元学习的核心思想。在深度学习中,元学习是一种让模型学会“学习”的方法。它让模型能够从一系列相关任务中学习到一种学习策略,这样当遇到新的、以前未见过的任务时,模型能利用这个策略快速调整自己,有效应对。比如,在图像识别任务中,如果模型通过元学习掌握了如何区分不同物体的技巧,那么即使遇到全新的类别,它也能更快地进行准确分类。
2024-07-03 16:29:45 339
原创 Pytorch学习笔记
首先安装Anaconda,包含了大量的工具包。不必下载最新版本,防止出现问题。https://repo.anaconda.com/ 安装3.6版本。记住安装路径,跳过安装VScode.打开anaconda promote.出现base即可。
2024-05-01 16:44:36 306 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人