在文本数据增强领域中,在困难的任务(即小样本自然语言理解)具有超过 10 亿个参数的强大基线(即预训练模型)只能带来微小的改进,有时甚至会大大降低性能。为了解决这一挑战,我们提出了一种新颖的数据增强方法FlipDA,它同时使用生成模型和分类器来生成标签翻转数据。FlipDA 的核心思想是发现生成标签翻转数据比生成标签保留数据对性能更为重要。
方法描述
本文提出的FlipDA是一种针对少样本学习的数据增强方法。该方法通过在训练数据中随机翻转句子、段落或整个文档来增加样本数量,并且可以在多个任务上进行使用。FlipDA的优点是简单易实现,而且不需要额外的人工标注数据。
方法改进
FlipDA相对于其他数据增强方法的主要优势在于其能够有效地提高模型性能。与其他方法相比,FlipDA能够在不同的任务和预训练模型上保持更好的鲁棒性。此外,FlipDA还可以处理多种文本类型,包括自然语言问题、短语、句子和长篇文章等。
解决的问题
本文主要解决了少样本学习中的数据不足问题。在实际应用中,由于各种原因(如隐私保护、成本限制等),很难获得足够的标记数据。因此,如何利用有限的标记数据来提高模型性能是一个重要的研究方向。本文提出的FlipDA方法可以有效地扩展少量标记数据,从而提高了模型的泛化能力和准确性。