给定一个按照升序排列的整数数组 nums,和一个目标值 target。找出给定目标值在数组中的开始位置和结束位置。
如果数组中不存在目标值 target,返回 [-1, -1]。
进阶:你可以设计并实现时间复杂度为 $O(\log n)$ 的算法解决此问题吗?
示例 1:
- 输入:nums = [5,7,7,8,8,10], target = 8
- 输出:[3,4]
示例 2:
- 输入:nums = [5,7,7,8,8,10], target = 6
- 输出:[-1,-1]
示例 3:
- 输入:nums = [], target = 0
- 输出:[-1,-1]
#思路
这道题目如果基础不是很好,不建议大家看简短的代码,简短的代码隐藏了太多逻辑,结果就是稀里糊涂把题AC了,但是没有想清楚具体细节!
下面我来把所有情况都讨论一下。
寻找target在数组里的左右边界,有如下三种情况:
- 情况一:target 在数组范围的右边或者左边,例如数组{3, 4, 5},target为2或者数组{3, 4, 5},target为6,此时应该返回{-1, -1}
- 情况二:target 在数组范围中,且数组中不存在target,例如数组{3,6,7},target为5,此时应该返回{-1, -1}
- 情况三:target 在数组范围中,且数组中存在target,例如数组{3,6,7},target为6,此时应该返回{1, 1}
这三种情况都考虑到,说明就想的很清楚了。
接下来,在去寻找左边界,和右边界了。
采用二分法来去寻找左右边界,为了让代码清晰,我分别写两个二分来寻找左边界和右边界。
刚刚接触二分搜索的同学不建议上来就想用一个二分来查找左右边界,很容易把自己绕进去,建议扎扎实实的写两个二分分别找左边界和右边界
#
Java实现代码:
class Solution {
public int[] searchRange(int[] nums, int target) {
int left = findLeft(nums, target);
int right = findRight(nums, target);
return new int[]{left, right};
}
private int findLeft(int[] nums, int target) {
int left = 0, right = nums.length - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] < target) {
left = mid + 1;
} else {
right = mid - 1;
}
}
if (left < nums.length && nums[left] == target) {
return left;
} else {
return -1;
}
}
private int findRight(int[] nums, int target) {
int left = 0, right = nums.length - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] > target) {
right = mid - 1;
} else {
left = mid + 1;
}
}
if (right >= 0 && nums[right] == target) {
return right;
} else {
return -1;
}
}
}
以左边界查找思路为例:
在二分查找的基础上,找到目标值后,我们需要继续向左查找,以找到最左边的目标值。具体的思路如下:
-
1.如果中间位置的值等于目标值,那么将右指针
right
向左移动,继续查找左半部分,即将right
赋值为mid - 1
。 -
2.如果中间位置的值小于目标值,那么说明目标值在右半部分,将左指针
left
向右移动,继续查找右半部分,即将left
赋值为mid + 1
。 -
3.如果中间位置的值大于目标值,那么说明目标值在左半部分,将右指针
right
向左移动,继续查找左半部分,即将right
赋值为mid - 1
。
每次移动完指针后,都要再次判断中间位置的值是否等于目标值,以确定下一步移动指针的方向。
由于每次移动指针的范围都是原来的一半,因此时间复杂度为 O(log n)。