斐波那契(尾递归,DP)

斐波那契

先看斐波拉契递归的朴素版本:

int fib1(int n) {

	if(n < 2)
		return n;
		
	else
		return fib1(n-1) + fib1(n-2);`
}

这段代码的意思是:第n个数等于前两个数之和。但 f(1) = 1, f(0) = 0, 这两个特殊值作为递归出口。


优化:

尾递归:

int fib_wei(int n , int a, int b) {

	if(n < 2) 
		return n;

	if(n == 2) 
		return b;

	return (n-1, b, a+b);

}
                
int main() {

    fib_wei(n, 1, 1);
    
    return 0;
}

这段代码明显可读性比朴素版本低,但优点在于将时间复杂度从O(2n) 变成了O(n),利用尾递归的特性做了一个自底向上的运算,相当于迭代。但是比迭代看起来更简洁。

DP版本:

    int fib(int n) {
        int arr[2] = {0, 1};
        
        for(int i = 2; i <= n; ++i) {
            arr[i & 1] = (arr[0] + arr[1]) % (int)(1e9 + 7);
        }
        
        return arr[n & 1];
    }
};

这个解题思路是在leetcode上看到的一位大佬的解题,斐波拉契的迭代思路,就是典型的DP思路,其延申式为arr[n] = arr[n-1] + arr[n-2],和尾递归一样,思路应该是自底向上,时间复杂度O(n)已经没法优化,但是作者将空间复杂度优化为了O(1)。正整数为偶数和奇数,奇数和偶数与1相与就只有1,和,0两个结果。

从变化上,从F(2) = F(1) + F(0), 由于10 & 01等于0,0应该被更新, f(3) = f(2) + f(1) , 这里1应该被更新。总结:偶数更新,arr[0],奇数更新arr[1]。

启示:要做运算的数据,可以以另一种形式储存。(位运算)

以下是其解题链接
作者Leetcode解题链接

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值