斐波那契数列求解+尾递归

1.普通递归

这里观察f[4]的递归树代替f[10]的递归树(后者比较大,画不下)。

在这里插入图片描述

使用递归求解的时候复杂度为 T ( n ) = T ( n − 1 ) + T ( n − 2 ) T(n)=T(n-1)+T(n-2) T(n)=T(n1)+T(n2),观察递归树,发现降速最快的是最右边每次减2,因此 n 2 \frac{n}{2} 2n层以上的部分肯定是满二叉树,因此时间复杂度肯定是 Ω ( 2 n 2 ) \Omega(2^{\frac{n}{2}}) Ω(22n)的,再加上其他节点,因此我们可以大概认为时间复杂度为 O ( 2 n ) O(2^n) O(2n),空间复杂度为树的深度为 O ( n ) O(n) O(n)

实现代码
ll Fibo(ll n)
{
    if(n<2) return n;
    return Fibo(n-1)+Fibo(n-2);
}
2.尾递归

通过改变函数的形式,能够让结果在最底层调用时直接返回。这样我们就可以在每一层函数尾调用自身来实现尾递归。因为编译器发现函数最后是尾调用(直接返回另一个函数)的时候将不会保存原函数的栈帧(因为已经执行结束),而是直接带着上一个栈帧的结果直接在原地进入下一栈帧。这样就没有递归调用时空间的额外消耗。

对于本问题,使用尾递归的话时间复杂度为 O ( n ) O(n) O(n),空间复杂度为 O ( 1 ) O(1) O(1)

ll Fibo2(ll n,ll x,ll y)//y保存当前项,调用时x=0,y=1,表示当前项为1
{
    if(1 == n) return y;
    return Fibo2(n-1, y, x+y);
}

3. 记忆化搜索

为了避免对已经计算过的值再次计算,我们用一个数组保存已经计算过的值。这样的时间复杂度将变为 O ( n ) O(n) O(n),空间复杂度也为 O ( n ) O(n) O(n)

ll Work3(ll n, ll* ans)
{
    if(n<2) return ans[n]=n;
    if(ans[n]) return ans[n];
    return ans[n]=Work3(n-1, ans)+Work3(n-2, ans);
}

ll Fibo3(ll n)
{
    ll *ans = new ll[n+5]();
    ll ret = Work3(n, ans);
    delete[] ans;
    return ret;
}
4. 递推

斐波那契有递推公式: F i b o [ n ] = F i b o [ n − 1 ] + F i b o [ n − 2 ] Fibo[n]=Fibo[n-1]+Fibo[n-2] Fibo[n]=Fibo[n1]+Fibo[n2],因此可以用递推解决。如果记忆所有项的话,空间复杂度为 O ( n ) O(n) O(n),如果不记忆的话空间复杂度为 O ( 1 ) O(1) O(1)。时间复杂度为 O ( n ) O(n) O(n)

ll Fibo4(ll n)
{
    ll *ans = new ll[n+5];
    ans[1]=1;
    for(ll i=2;i<=n;++i) ans[i]=ans[i-1]+ans[i-2];
    ll ret=ans[n];
    delete[] ans;
    return ret;
}
性能测试
#include <iostream>
#include <algorithm>
#include <ctime>

using namespace std;

typedef long long ll;
typedef ll (*FP)(ll);

ll Fibo1(ll n)
{
    if(n<2) return n;
    return Fibo1(n-1)+Fibo1(n-2);
}

ll Work2(ll n,ll x=0,ll y=1)//y保存当前项,调用时x=0,y=1,表示当前项为1
{
    if(1 == n) return y;
    return Work2(n-1, y, x+y);
}

ll Fibo2(ll n)
{
    return Work2(n);
}

ll Work3(ll n, ll* ans)
{
    if(n<2) return ans[n]=n;
    if(ans[n]) return ans[n];
    return ans[n]=Work3(n-1, ans)+Work3(n-2, ans);
}

ll Fibo3(ll n)
{
    ll *ans = new ll[n+5]();
    ll ret = Work3(n, ans);
    delete[] ans;
    return ret;
}

ll Fibo4(ll n)
{
    ll *ans = new ll[n+5];
    ans[1]=1;
    for(ll i=2;i<=n;++i) ans[i]=ans[i-1]+ans[i-2];
    ll ret=ans[n];
    delete[] ans;
    return ret;
}

void Test(ll n,FP fp[])
{
    clock_t S,E;
    for(int i=0;i<4;++i)
    {
        int T=10;
        double sum=0;
        for(int j=0;j<T;++j)
        {
            S=clock();
            fp[i](n);
            E=clock();
            sum+=(double)(E-S)/CLOCKS_PER_SEC;
        }
        cout<<"方法"<<i+1<<"平均用时"<<sum/T<<"s"<<endl;
    }
}

int main()
{
    FP fp[4]={Fibo1,Fibo2,Fibo3,Fibo4};
    ll n;
    cout<<"请输入需要查询斐波那契数列第几项:"; cin>>n;
    Test(n,fp);
    return 0;
}
运行结果

在这里插入图片描述

性能分析

可以看到后面几种方法的复杂度相差不多,但是同样是递归处理,尾递归比普通递归的复杂度明显优秀很多,所以如果可以的话应该尽量将递归变成尾递归的方式进行处理。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值