7-12 拯救007 (25 分)
在老电影“007之生死关头”(Live and Let Die)中有一个情节,007被毒贩抓到一个鳄鱼池中心的小岛上,他用了一种极为大胆的方法逃脱 —— 直接踩着池子里一系列鳄鱼的大脑袋跳上岸去!(据说当年替身演员被最后一条鳄鱼咬住了脚,幸好穿的是特别加厚的靴子才逃过一劫。)
设鳄鱼池是长宽为100米的方形,中心坐标为 (0, 0),且东北角坐标为 (50, 50)。池心岛是以 (0, 0) 为圆心、直径15米的圆。给定池中分布的鳄鱼的坐标、以及007一次能跳跃的最大距离,你需要告诉他是否有可能逃出生天。
输入格式:
首先第一行给出两个正整数:鳄鱼数量 N(≤100)和007一次能跳跃的最大距离 D。随后 N 行,每行给出一条鳄鱼的 (x,y) 坐标。注意:不会有两条鳄鱼待在同一个点上。
输出格式:
如果007有可能逃脱,就在一行中输出"Yes",否则输出"No"。
输入样例 1:
14 20
25 -15
-25 28
8 49
29 15
-35 -2
5 28
27 -29
-8 -28
-20 -35
-25 -20
-13 29
-30 15
-35 40
12 12
输出样例 1:
Yes
输入样例 2:
4 13
-12 12
12 12
-12 -12
12 -12
输出样例 2:
No
也不知道是该说题目太水,还是太坑…我把15当成了半径居然还能水22分…
#include <bits/stdc++.h>
using namespace std;
const int N = 110;
double x[N],y[N],vis[N];
double n,m ,flag=0;
int dfs(int xx,int yy)
{
if(abs(abs(xx)-50) <= m || abs(abs(yy)-50)<= m)
return flag = 1;
for(int i=0;i<n;i++)
{
if( !vis[i] && pow(xx-x[i],2)+pow(yy-y[i],2) <= m*m)
vis[i]=1, dfs(x[i],y[i]),vis[i]=0;
}
return 0;
}
int main()
{
cin>>n>>m;
for(int i=0;i<n;i++)
cin>>x[i]>>y[i];
if(m + 7.5 >= 50) flag=1;
for(int i=0;i<n;i++)
{
if(pow(x[i],2)+ pow(y[i],2) <= (m+7.5)*(m+7.5) )
{
vis[i]=1;
dfs(x[i],y[i]);
vis[i]=0;
}
}
if(flag) cout<<"Yes"<<endl;
else cout<<"No"<<endl;
return 0;
}