高效率机器学习进阶
文章平均质量分 84
BUCT_Yanglp
这个作者很懒,什么都没留下…
展开
-
XGBoost:理论基础与模型应用(二) 集成模型
XGBoost:理论基础与模型应用 XGBoost:理论基础与模型应用(一) 决策树模型 文章目录XGBoost:理论基础与模型应用集成学习集成学习介绍BoostingBaggingStacking 集成学习 集成学习是当前机器学习领域热点研究问题之一,近年来研究成果层出不穷,在诸如Kaggle等知名机器学习、数据竞赛中也屡屡崭露头角。XGBoost与谷歌所开发的LightGBM(轻量级梯度提升机)则并称为集成学习的倚天屠龙。 集成学习介绍 集成学习的基本思想是把多个学习器通过一定方法进行组合,以达到最原创 2021-08-18 18:19:37 · 217 阅读 · 0 评论 -
XGBoost:理论基础与模型应用
XGBoost:理论基础与模型应用(一) 决策树模型 目录XGBoost:理论基础与模型应用(一) 决策树模型前言ID3算法信息增益ID3算法过程C4.5CARTCART生成分类树的生成回归树的生成总结 主要参考[Ref.1-2],加以自己的实践、经验以及他人研究整理而成。如有事宜、讨论,请联系私信我或在下方评论。 [1] 何龙.深入理解XGBoost[M].北京:机械工业出版社,2020. [2] Chen T, Guestrin C. Xgboost: A scalable tree boosting原创 2021-08-17 13:43:17 · 769 阅读 · 0 评论