基于EEMD方法的降噪与解调在轴承故障诊断中的应用实证研究

本文详细介绍了基于EEMD(集合经验模态分解)方法在轴承故障诊断中的应用,包括降噪和解调两个方面。首先,通过相关系数法和峭度准则选择EEMD的IMF分量进行降噪处理,提高了信号的可读性。然后,结合峭度准则和快速谱峭度理论进行共振解调,有效地识别出轴承的故障特征,如83Hz附近的内圈故障。实验研究表明,EEMD方法能够有效提取故障特征,对于轴承故障的诊断具有显著效果。
摘要由CSDN通过智能技术生成

摘要

对经验模态分解(EMD)方法和集合经验模态分解(EEMD)方法相关研究进行梳理与总结。阐述了经验模态分解(EMD)中有效本征模态分量(IMF)的两种选取方法(相关系数法、峭度准则)。将EEMD方法用于降噪,并对降噪后的数据进行频谱分析,构建出数据驱动的自适应降噪方法。将EEMD方法与峭度准则、快速谱峭度法结合用于共振解调,有效识别出了轴承的故障特征。


关键词:轴承;故障诊断;EEMD;频谱分析;包络谱分析

1 引言

   随着“工业4.0”的提出和现代技术的发展,如何使机械少故障或者无故障长周期运行日益受到国内外工程界和学术界的关注【1】。自愈调控是在故障机理分析的基础上,利用仿生自愈设计赋予装备自愈功能,使其不发生故障或可不停机由异常状态恢复到正常状态,是保证智能装备健康运行的有效方案【2】。而故障的早期预警、实时诊断、快准溯源则是保证自愈调控的关键【3】。

   轴承作为机械系统中关键零部件之一,一旦出现严重故障可能会导致机器停机,造成巨大的经济损失。在实际工作过程中,轴承故障振动信号微弱,容易被强干扰信号覆盖【4】。如何有效完成强噪声环境下的轴承故障振动信号中故障特征的提取,对故障进行及时诊断受到了广泛关注【5】。

按照反映故障信息的载体而言,目前的故障诊断方法可划分为【6】:
(1)温度监测法。
(2)油液检测法。
(3)振动信号分析法。
(4)声发射法。
(5)间隙测定诊断法等。

而从文献中发现,基于振动信号和电流的监测对于故障诊断是首选的[7、8、9]。原因如下:
(1)技术具有非入侵性,可靠性高且价格低廉。
(2)信号数据能有效且高精度地表明机器当前的运行状态。
(3)振动信号易于测量以进行进一步的信号处理。
(4)可以在线获取机械电流和振动的信息,因此可以在线执行故障检测。

   在2013年Tamilselvan[10]将DBN(深度信念网络)应用于飞机发动机故障诊断之后,使用振动信号分析的故障诊断技术主要可分为:

(1)传统信号处理的轴承故障诊断方法。
   主要集中于时域分析[11]、频域分析[12]以及时频域分析[13]三种分析方式。传统的信号处理方法以快速傅里叶变换(FFT)为核心。 在降噪处理、故障特征提取等方面的主流方法有:小波变换[14]、Hilbert-Huang 变换[15](HHT)、经验模态分解[16](Empirical Mode Decomposition,EMD)等。传统信号处理方法的主要流程如下:

  •  图1:传统信号处理流程框图
    

(2)基于深度学习算法的智能诊断方法[17]。
   这种方法与传统方法较大的区别在于完全由数据驱动(Data-Driven),避免了传统算法繁琐的特征提取过程,能够自动挖掘输入数据的深层特征,降低了诊断结果对专家知识的依赖。特别是近年来,以神经网络为代表的深度学习方法在模式识别领域取得了巨大的成功[18]。这一方向逐渐成为机械故障诊断领域研究热点。

   在轴承故障诊断方面,2016年,Janssens等人[19]首次将卷积神经网络(CNN)用于轴承状况监测。其研究结果表明,CNN明显优于经典特征工程。目前已在轴承故障诊断领域成功应用的深度学习模型有:卷积神经网络(CNN)[20],深度置信网络(DBN)[21]和深度自动编码器(DAE)[22]。

   良好的深度神经网络模型很大程度上依赖于在大量样本数据上的训练。如果训练数据不足,则提取的深度特征很容易发生过拟合现象。导致诊断结果准确性和稳定性的大幅降低[23]。为克服这一困难,有较多学者选择使用Case Western Reserve University公布的轴承数据训练神经网络模型,并获得了不错的成果,如文献[24]。同时,2015年,G. Koch[25]等人率先将小样本学习方法(FSL)应用在深度学习算法里的CNN模型中。随后,学者们使用FSL方法在机器视觉[26]、声信号处理[27]领域取得了较大成果,在机械故障诊断领域结合小样本学习方法的神经网络模型相关研究则相对较少。

   但轴承作为一个复杂机械系统的一部分,工作环境对其能否正常运行起着较大作用,使用的数据集决定了诊断效果的好坏。神经网络模型对轴承故障诊断能力的泛化作用值得进一步探究。对泛化效果良好的神经网络模型来说,可将机器从繁琐的传统算法中解放,在实时诊断、实时预警、降低故障危害方面有较大优势。

   本文采用传统信号处理的轴承故障诊断方法。对EEMD方法的降噪和解调作用分别做了对应的实证分析,研究结果表明,EEMD方法能起到较好的效果,有利于轴承故障的特征提取与识别。

2 EEMD简介

2.1 EMD简介

EEMD是在EMD的基础上做的改进,所以有必要介绍EMD。

   经验模态分解法(Empirical Mode Decomposition)[28],由美国国家宇航局美籍华人黄锷(N. E.Huang)等人在对瞬时频率问题进行深入研究之后所提出地将任意信号自适应分解为基本模式分量(IMF)的新方法。此方法适用于非线性和非平稳信号的分析,目前已被广泛的应用于机械故障诊断领域[29]。

   EMD算法分解的目的是将一个信号f(t)分解为N个固有模态分量(IMF)和一个残差[28]。其中,IMF须满足以下条件:
   (1)、原始振动信号序列中,信号幅值为零的点数和极值点数必须相等。即极值点数和过零点个数相同。
   (2)在任意时刻,信号包络的极值点平均值必须为零。即信号极大值包络(上包络线)和信号极小值包络(下包络线)的平均值必须为零。
   其主要流程可表示为:
图2:EMD算法流程图

图2:EMD算法流程图

但EMD方法存在着以下问题[30]:

(1)EMD分解存在边界效应,尽管有很多减小边界效应的方法,但仍不能从根本上消除。
(2)现有的EMD分解算法还不算很完善,信号在分解过程中会产生这样或那样的误差,一方面会产生较多的分量,从而带来附加的低频信息。
(3)由于信号的复杂性,可能会产生各分量之间存在模态混叠的现象,不利于信号的进一步分析。

2.2 EEMD简介

   为减轻EMD所存在的模态混叠现象,Huang等[31]于2009年提出一种新的白噪声辅助数据分析方法一一EEMD集合经验模态分解。将原始信号 x(t) 设定平均处理次数 N,初始i=1,2,…,N。EEMD 具体分解方法如下:

   Step-1:在X(t)中添加高斯白噪声 G i ( t ) G_i(t) Gi(t)获得综合信号 X 1 ( t ) X_1(t) X1(t)

X 1 ( t ) = x ( t ) + G i ( t ) X_1(t)=x(t)+G_i(t) X1(t)=x(t)+Gi(t)   公式(1)

   Step-2:利用EMD将 X 1 ( t ) X_1(t) X1(t)分解得到不同尺度的IMF分量:
X 1 ( t ) = ∑ i = 1 N I M F i , n ( t ) + r i , n ( t ) X_1(t)=\displaystyle \sum^{N}_{i=1}{ {IMF_{i,n}(t)+r_{i,n}(t)}} X1(t)=i=1NIMFi,n(t)+ri,n(t)   公式(2)

   Step-3:X(t)添加不同的高斯白噪声,重复Step-1和Step-2,得 x(t) 经 EEMD 分解后的第 k 个分量:
x k ( t ) = ∑ k = 1 N I M F k , n + r k , n ( t ) x_k(t)=\displaystyle \sum^{N}_{k=1}IMF_{k,n}+r_{k,n}(t) xk(t)=k=1NIMFk,n+rk,n(t)   公式(3)

   Step-4:对EEMD分解后IMF分量做平均,根据不相关随机序列统计均值为0,消除加入高斯白噪声对真实IMF分量的影响,即为:
I M F n ( t ) = 1 N ∑ k = 1 N

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值