- 博客(3)
- 问答 (5)
- 收藏
- 关注
原创 深入解读Batch Normalization
对BatchNorm的误解(重点问题写在前面)如果你在看到这篇博客之前已经看了不少BatchNorm相关的博客或者知乎文章,相信你会看到不少对BatchNorm这样的描述:BatchNorm的作用是把每层神经网络的输出(输入)的分布强行拉回均值为0、方差为1的标准正态分布。首先,这种描述是错误的,如果BatchNorm的作用是这个,那不就把前面神经元学习到的数据分布给破坏了,这样反而学不到任何东西。因此作者引入了可训练参数γ\gammaγ和β\betaβ,使得数据的分布不会局限在均值为0、方差为1。第二个
2022-05-17 15:45:08
1051
原创 语义分割 Pytorch计算mIoU、PA等评价指标(可忽略指定类别)
语义分割常用的指标有:PA: 像素准确率CPA: 类别像素准确率IoU:交并比mIoU:平均交并比其中mIoU是用得比较多一个评价标准具体的介绍计算方法可以参考下面这篇博客,博主进行了很详细的介绍:【语义分割】评价指标:PA、CPA、MPA、IoU、MIoU详细总结和代码实现(零基础从入门到精通系列!)本文主要是想写一个用Pytorch计算的方法。当初想着直接拿这些评价指标的倒数作为loss来训练网络,所以才想着用Pytorch来计算这些评价指标。事实证明还是太年轻,哈哈。有这种想法的小伙伴
2021-08-28 20:51:39
10207
19
原创 torch实现np.nanmean的功能
torch实现np.nanmean的功能tensor = torch.tensor([1,2,3,4,np.float('nan')])nanmean = tensor[tensor < float('inf')].mean()print(tensor)print(tensor.mean())print(nanmean)## output# tensor([1., 2., 3., 4., nan])# tensor(nan)# tensor(2.5000)
2021-08-27 19:25:21
979
空空如也
不同模型,训练结果差不多,测试结果却相差很大
2021-09-19
计算IoU的时候需要忽略某些标签值,该怎么计算?
2021-08-27
TA创建的收藏夹 TA关注的收藏夹
TA关注的人