语义分割 Pytorch计算mIoU、PA等评价指标(可忽略指定类别)

语义分割常用的指标有:
PA: 像素准确率
CPA: 类别像素准确率
IoU:交并比
mIoU:平均交并比
其中mIoU是用得比较多一个评价标准

具体的介绍计算方法可以参考下面这篇博客,博主进行了很详细的介绍:
【语义分割】评价指标:PA、CPA、MPA、IoU、MIoU详细总结和代码实现(零基础从入门到精通系列!)

本文主要是想写一个用Pytorch计算的方法。当初想着直接拿这些评价指标的倒数作为loss来训练网络,所以才想着用Pytorch来计算这些评价指标。事实证明还是太年轻,哈哈。有这种想法的小伙伴赶紧停止你的幻想,刚入门的可以先拿交叉熵损失练练手。

话不多说,直接上代码:


"""
refer to https://github.com/jfzhang95/pytorch-deeplab-xception/blob/master/utils/metrics.py
"""

import torch
import cv2
import numpy as np
__all__ = ['SegmentationMetric']

"""
confusionMetric  # 注意:此处横着代表预测值,竖着代表真实值,与之前介绍的相反
P\L     P    N
P      TP    FP
N      FN    TN
"""


class SegmentationMetric(object):
    def __init__(self, numClass):
        self.numClass = numClass
        self.confusionMatrix = torch.zeros((self.numClass,) * 2)  # 混淆矩阵(空)

    def pixelAccuracy(self):
        # return all class overall pixel accuracy 正确的像素占总像素的比例
        #  PA = acc = (TP + TN) / (TP + TN + FP + TN)
        acc = torch.diag(self.confusionMatrix).sum() / self.confusionMatrix.sum()
        return acc

    def classPixelAccuracy(self):
        # return each category pixel accuracy(A more accurate way to call it precision)
        # acc = (TP) / TP + FP
        classAcc = torch.diag(self.confusionMatrix) / self.confusionMatrix.sum(axis=1)
        return classAcc  # 返回的是一个列表值,如:[0.90, 0.80, 0.96],表示类别1 2 3各类别的预测准确率

    def meanPixelAccuracy(self):
        """
        Mean Pixel Accuracy(MPA,均像素精度):是PA的一种简单提升,计算每个类内被正确分类像素数的比例,之后求所有类的平均。
        :return:
        """
        classAcc = self.classPixelAccuracy()
        meanAcc = classAcc[classAcc < float('inf')].mean() # np.nanmean 求平均值,nan表示遇到Nan类型,其值取为0
        return meanAcc  # 返回单个值,如:np.nanmean([0.90, 0.80, 0.96, nan, nan]) = (0.90 + 0.80 + 0.96) / 3 =  0.89

    def IntersectionOverUnion(self):
        # Intersection = TP Union = TP + FP + FN
        # IoU = TP / (TP + FP + FN)
        intersection = torch.diag(self.confusionMatrix)  # 取对角元素的值,返回列表
        union = torch.sum(self.confusionMatrix, axis=1) + torch.sum(self.confusionMatrix, axis=0) - torch.diag(
            self.confusionMatrix)  # axis = 1表示混淆矩阵行的值,返回列表; axis = 0表示取混淆矩阵列的值,返回列表
        IoU = intersection / union  # 返回列表,其值为各个类别的IoU
        return IoU

    def meanIntersectionOverUnion(self):
        IoU = self.IntersectionOverUnion()
        mIoU = IoU[IoU<float('inf')].mean()# 求各类别IoU的平均
        return mIoU

    def genConfusionMatrix(self, imgPredict, imgLabel, ignore_labels):  #
        """
        同FCN中score.py的fast_hist()函数,计算混淆矩阵
        :param imgPredict:
        :param imgLabel:
        :return: 混淆矩阵
        """
        # remove classes from unlabeled pixels in gt image and predict
        mask = (imgLabel >= 0) & (imgLabel < self.numClass)
        for IgLabel in ignore_labels:
            mask &= (imgLabel != IgLabel)
        label = self.numClass * imgLabel[mask] + imgPredict[mask]
        count = torch.bincount(label, minlength=self.numClass ** 2)
        confusionMatrix = count.view(self.numClass, self.numClass)
        # print(confusionMatrix)
        return confusionMatrix

    def Frequency_Weighted_Intersection_over_Union(self):
        """
        FWIoU,频权交并比:为MIoU的一种提升,这种方法根据每个类出现的频率为其设置权重。
        FWIOU =     [(TP+FN)/(TP+FP+TN+FN)] *[TP / (TP + FP + FN)]
        """
        freq = torch.sum(self.confusion_matrix, axis=1) / torch.sum(self.confusion_matrix)
        iu = np.diag(self.confusion_matrix) / (
                torch.sum(self.confusion_matrix, axis=1) + torch.sum(self.confusion_matrix, axis=0) -
                torch.diag(self.confusion_matrix))
        FWIoU = (freq[freq > 0] * iu[freq > 0]).sum()
        return FWIoU

    def addBatch(self, imgPredict, imgLabel, ignore_labels):
        assert imgPredict.shape == imgLabel.shape
        self.confusionMatrix += self.genConfusionMatrix(imgPredict, imgLabel, ignore_labels)  # 得到混淆矩阵
        return self.confusionMatrix

    def reset(self):
        self.confusionMatrix = torch.zeros((self.numClass, self.numClass))

# 测试内容
if __name__ == '__main__':
	imgPredict = torch.tensor([[0,1,2],[2,1,1]]).long()  # 可直接换成预测图片
	imgLabel = torch.tensor([[0,1,255],[1,1,2]]).long() # 可直接换成标注图片
	ignore_labels = [255]
	metric = SegmentationMetric(3) # 3表示有3个分类,有几个分类就填几, 0也是1个分类
	hist = metric.addBatch(imgPredict, imgLabel,ignore_labels)
	pa = metric.pixelAccuracy()
	cpa = metric.classPixelAccuracy()
	mpa = metric.meanPixelAccuracy()
	IoU = metric.IntersectionOverUnion()
	mIoU = metric.meanIntersectionOverUnion()
	print('hist is :\n', hist)
	print('PA is : %f' % pa)
	print('cPA is :', cpa)  # 列表
	print('mPA is : %f' % mpa)
	print('IoU is : ', IoU)
	print('mIoU is : ', mIoU)

##output
# hist is :
# tensor([[1., 0., 0.],
#        [0., 2., 1.],
#        [0., 1., 0.]])
# PA is : 0.600000
# cPA is : tensor([1.0000, 0.6667, 0.0000])
# mPA is : 0.555556
# IoU is :  tensor([1.0000, 0.5000, 0.0000])
# mIoU is :  tensor(0.5000)


其实就是把原程序的numpy替换成了torch,这两个框架很多命令都是一样的。唯一不同的是torch里面没有类似np.nanmean()这个函数。np.nanmean()可以计算除NaN之外的其他元素的平均值。torch如何实现这个功能呢?其实也很简单,一行代码就能搞定:

tensor[tensor < float('inf')].mean()

具体也可以参考我另外一篇博客:
torch实现np.nanmean的功能

解决这个之后就能用pytorch来计算mIoU了。

下一个问题就是在计算精度时我要忽略一些标签该怎么办?比如我们训练的时候经常把交叉熵损失中的ignore_index设置为255来忽略掉255这个标签,也就是该标签值不参与损失计算。个人理解应该是该标签值对应的元素,不管你预测成什么样都不会影响计算的结果。那么测试的时候呢,不会有影响吗?这也是我这两天一直在想该怎么解决这个问题,答案就是在你测试计算精度的时候也忽略掉这个值,只计算你感兴趣的类的精度。我的方法是通过修改生成混淆矩阵来实现:

def genConfusionMatrix(self, imgPredict, imgLabel, ignore_labels):  #
        """
        同FCN中score.py的fast_hist()函数,计算混淆矩阵
        :param imgPredict:
        :param imgLabel:
        :return: 混淆矩阵
        """
        # remove classes from unlabeled pixels in gt image and predict
        mask = (imgLabel >= 0) & (imgLabel < self.numClass)
        for IgLabel in ignore_labels:
            mask &= (imgLabel != IgLabel)
        label = self.numClass * imgLabel[mask] + imgPredict[mask]
        count = torch.bincount(label, minlength=self.numClass ** 2)
        confusionMatrix = count.view(self.numClass, self.numClass)
        # print(confusionMatrix)
        return confusionMatrix

# mask返回的是一个布尔型数据
# imgLabel = tensor([[0, 1, 255],
#  					 [1, 1, 2]])
# mask = tensor([[ True,  True, False],
#                [ True,  True,  True]])

# 利用mask只返回True对应的元素,用于计算

比如Cityscape数据集训练的时候使用的是trainId,总共19类。但是评估的时候却是用原有的34类标签(labelId)来计算。所以计算的时候有15个类别是被忽略掉的。虽然Cityscape也有给出评估的相关程序,但是他那个太复杂了,看着头晕,反正我是看不太明白。

以上就是我这两天摸索出来的方法,写出来分享给大家,有什么错误或者改进的地方也欢迎大家提出来

  • 8
    点赞
  • 69
    收藏
    觉得还不错? 一键收藏
  • 18
    评论
对于语义分割任务,PyTorch 提供了丰富的工具和库来进行模型的训练和推理。下面是一个基本的语义分割PyTorch 实现框架: 1. 数据准备: 首先,你需要准备语义分割的训练数据集。通常,数据集包括图像和对应的标签图像,其中标签图像的每个像素都对应着一个类别标签。可以使用一些开源的语义分割数据集,如Cityscapes、PASCAL VOC等。 2. 定义模型: 接下来,你需要定义一个语义分割模型。常用的模型包括 U-Net、FCN、DeepLabv3 等。你可以使用 PyTorch 提供的模块来定义网络结构,例如 nn.Module、nn.Conv2d、nn.BatchNorm2d 等。 3. 数据加载和预处理: 使用 PyTorch 提供的 DataLoader 加载训练数据集,并进行必要的数据预处理,如图像大小调整、数据增强等。 4. 定义损失函数和优化器: 对于语义分割任务,常用的损失函数是交叉熵损失函数(CrossEntropyLoss)。可以使用 PyTorch 提供的优化器,如 Adam、SGD 等。 5. 训练模型: 通过迭代训练数据集,将图像输入模型进行前向传播,计算损失值,然后进行反向传播和参数更新,直到达到预设的训练轮数或达到停止训练的条件。 6. 模型评估: 使用验证集或测试集对训练好的模型进行评估。可以计算预测结果与真实标签之间的 Intersection over Union (IoU) 或像素准确率等指标。 7. 模型推理: 使用训练好的语义分割模型对新的图像进行推理。将图像输入模型,得到每个像素的类别预测结果。 这是一个基本的语义分割任务的 PyTorch 实现框架,你可以根据具体需求灵活调整和扩展。在实际应用中,还可以结合深度学习库中的其他工具和技巧来进一步提升模型性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值