推荐算法
踏过那抹星空
Tomorrow is another day!
展开
-
《实用机器学习》(孙亮 黄倩.著)笔记——第七章 无矩阵分解的基准方法
bui表示基准算法对于评价rui的预测,bu和bi分别是用户u和商品i各自对应的偏差,μ是所有评价的平均值 在推荐问题中引入损失函数,通过最小化损失函数,得到参数的最佳估计值,这里采用平方和损失函数: 需要考虑模型的过拟合问题,我们加入正则化项: λ1≥0是控制正则化项权重的参数 ...原创 2020-05-20 15:16:38 · 163 阅读 · 0 评论 -
《实用机器学习》(孙亮 黄倩.著)笔记——第七章 推荐算法基础
一、推荐算法基础 两类基本对象:1、用户(user);2、商品(item) 除了用户-商品的交互信息外,其他可以利用的数据包括: (1)商品的信息,包括商品的价格、类型等; (2)用户的信息,如用户的性别、年龄、居住地点等。 推荐算法分类: (1)基于内容的推荐算法; (2)基于协同过滤的推荐算法。 基于内容的推荐算法:利用商品的相关信息为每件商品构建一个特征向量来表示对应的商品。 基于协同过滤的推荐算法:利用用户和商品之间的相互关系来构建推荐模型和进行推荐。所谓协同过滤:就是找出类似的用户或者商品(这一阶原创 2020-05-20 14:37:09 · 228 阅读 · 0 评论