《实用机器学习》(孙亮 黄倩.著)笔记——第七章 无矩阵分解的基准方法

在这里插入图片描述
bui表示基准算法对于评价rui的预测,bu和bi分别是用户u和商品i各自对应的偏差,μ是所有评价的平均值
在这里插入图片描述

在推荐问题中引入损失函数,通过最小化损失函数,得到参数的最佳估计值,这里采用平方和损失函数:
在这里插入图片描述
需要考虑模型的过拟合问题,我们加入正则化项:
在这里插入图片描述
λ1≥0是控制正则化项权重的参数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值